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Relativistic Astrophysics and Cosmology

Zeldovich and independently Edwin Salpeter were the first to suggest that accretion

disks around massive black holes are responsible for the huge amounts of energy radiated by
quasars.

Zel'dovich and Starobinski showed Hawking that, according to the quantum

mechanical uncertainty principle, rotating black holes should create and emit particles.

The Sunyaev-Zel'dovich effect (Scatter of CMB photons on hot electrons in clusters of gal.)

The Zeldovich spectrum of primordial fluctuations (scale-free power spectrum)

He argued that the relativistically-invariant theory of vacuum would
result in non-zero minimum of the vacuum energy with the equation of state

Pvac = —evac- Lambda term in Einstein eq. must be placed on the right hand side.

**XX* The Zel'dovich approximation in 1970 *****


http://en.wikipedia.org/wiki/Edwin_Ernest_Salpeter
http://en.wikipedia.org/wiki/Black_hole
http://en.wikipedia.org/wiki/Quasars
http://en.wikipedia.org/wiki/Stephen_Hawking
http://en.wikipedia.org/wiki/Uncertainty_principle
http://en.wikipedia.org/wiki/Rotating_black_hole
http://en.wikipedia.org/wiki/Sunyaev-Zel%27dovich_effect
http://en.wikipedia.org/w/index.php?title=Zel%27dovich_approximation&action=edit&redlink=1

From recommendation for Zeldovich to Academy of Sciences
of USSR

"It is characteristic for Ya.B. Zeldovich to widely use the
methods of hydrodynamics along with “conventional” methods
of theoretical physics. This ability to use the both techniques
-very rare among theorists - is a very advantageous trait of

Zeldovich, allowing him to solve problems which
can be solved by neither pure hydrodynamicists
nor “conventional” theorists.”

Lev Landau, 1946
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Structure in the Universe

13.7 billion years ago NOW

Below 5 the image in its original context on the page: www. astro. princeton. eduy/ ~mijuric/universel

Plank map

Temperature fluctuations of Cosmic
Microwave Background

T=2.73 K

(fluctuations:

of the order of 1/100,000

Galaxy distribution in
a thin slice



Why did complexity begin to grow?
- Thanks to gravitational instability of Dark Matter
Why only Dark matter?

4.9%

more mass - stronger gravity ..

Matter
26.8%

we - NOW

68.3%

Atoms alone could NOT develop
structures because they

were unable to overcome

the expansion of the universe!

13.7 billion
years ago

That's why we focus on the growtﬁof“édrhple.xity
in Dark Matter.
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Large-Scale Structure of the universe
in 1970
OBSERVATIONS:

de Vaucouleurs (1956), (1960) : The Local Supercluster

The first observational results that claimed the discovery of Superclusters of galaxies

Chincarini & Rood 1976, Gregory & Thompson 1978



de Vaucouleyrs 1981

SGY

Figure 3 All 2175 galaxies in the Nearby Galaxy Catalog (NBG) projected onto the SGY-
SGZ plane. The SGY-axis is directed toward supergalactic longitude 90°, supergalactic
latitude 0° (/M = 227°, b" = +83?7), the SGZ-axis toward supergalactic latitude 90°
(" = 47°4, b" = +6°3). The radius of the outer boundary is 60 Mpc. The galactic zone of
avoidance (b < 15°) is contained within the opposed wedges tilted by 6° with respect to the
SGZ-axis. There is a zone of incompletion (6 < —45°), which is projected across most of the
southern supergalactic hemisphere. Figures 3—6 are reproduced by courtesy of R. B. Tully (92).

Figure 2. Distribution of the Shapley-Ames galaxies (1932) in (old) galactic coordinates. The zone
of avoidance (dark) and of partial obscuration (grey) by the Milky Way is indicated. The super-
galactic equator and parallels at £30° latitude are marked. Two external galaxy clouds in Hydra
(1T = 240") and Pavo-Indus (/! = 310") and the elongated Dorado-Fornax-Eridanus strcam or
“southern supergalaxy" are cutlined.



RIGHT ASCENSION (1950)
13"o0™ 12"30"™ 12"o0™
1

Figure 12 “Wedge diagram” of the Coma supercluster [Gregory & Thompson (40)]. As the supercluster is elongated in the east-west direction, right
ascensions have been chosen as position coordinates ; the galaxies lie between + 19° and + 32° declination. The angular size has been magnified about
two times compared with the indicated distance scale.

Gregory & Thompson 1978
see also Chincarini & Rood 1976

SYALSNTO™AdNS



Large-Scale Structure of the universe
in 1970
THEORY:

"Gravitational Instability is similar to capitalism:

in the course of time
rich become richer
while
poor become poorer

and the gap between the rich and poor is widening
and becomes catastrophic.”

Zeldovich



1979 Aarseth, Gott lll, Ed Turner
ApJ, 228, 664

FiG. la




State of art N-body simulations
1981 Efstathiou, Eastwood, MNRAS, 194, 503

Clustering of particles in an expanding Universe 511
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Figure 1. X-Y projection of the particle positions for a 20 000-body numerical experiment after the
syst:r;l ;as e);pgnded by a factor of 9.9. In this case the expansion follows that of an Einstein—de Sitter
model, 2, =1.0.
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Zel'dovich approximation (1970)

Comoving coordinates: r;,

Zel’dovich approximation is a map: ri(q,t) = q; + D(t)s;(q)

If ®(q) is the linear perturbation of grav. potential then s;(q) = —0®/0q;

Density can be found from the conservation of mass

-1

o 8Sz . 82(13
gy 0q;0qy,

Linear density fluctuations: op/p=D(t)(a+ B+ 7).

The Zel’dovich approximation describes anisotropic collapse and motion.

16






Hidding, Shandarin, van de Weygaert 2014

P.J.E.Peebles 1980 The Large-Scale Structure of the Universe
8 pages on Caustics and Pancakes with the verdict: death

Assumptions are not realistic, approximation is kinematic,
pancakes are unstable therefore no observational traces remain
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Singulari
Trﬂmmv
Vladimir Igorevich
‘ Arnold
1937 - 2010

“Mathematics is a part of physics.

Physics is an experimental science, a part of natural science.

Mathematics is the part of physics where experiments are cheap.”



ADE classification of caustics in 3D (Arnold 1981)

n=J, Euler space, series A n=J, Euler space, serjes D
instantaneous caustics
instamaneou_s caustics 50 bicamtic type <0 ¢=0 $>0 bicaustic

Arnold [T~
Shandarin
Zeldovich

1981
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Pancake connectivity in 2D

Hidding, Shandarin,
van de Weygaert 2014



Hidding,
Shandarin,

van de Weygaert
2014




Zel'dovich Approximation Adhesion Approximation
Skeleton of structure

Hidding 2010




WEB
or
IRREGULAR HONEYCOMB



Klypin & Shandarin 1983; Shandarin & Klypin 1984
First demonstration of filaments in 3D N-body
by plotting density contours

Dy
A
3D numerical model of the Universe 903 ‘\'.A 6": -4: é’v/‘t ‘\‘.“
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Figure 4. A surface of constant density level is plotted for the same region as that in Fig. 3. o \‘n
N
‘Cosmic chicken’ i’é, \
C. Frenk =

FIG. 1. A typical model isodensity surface, p =2.5 p, within a randomly
selected sphere of radius 45 ht MPe,



o

. one may conventionally divide the cluster formation
process into three steps. In the first stage, contraction along
the axis with the maximum deformation rate would rise to a
pancake, but its development would not halt any contraction
that may take place along the other two directions.

In the second step some of the pancake material would
contract along a second direction, forming curvilinear (not
straight, in general) structures or “filaments”, having a finite
thickness substantially smaller than their length, as depicted
in Fig. 1.

Finally, in the third stage flows along the filaments would
produce compact clumps. Thus clusters would be born at
points where even during the filament stage contraction had
been occurring along all three directions.”

Shandarin and Klypin 1984, Sov. Astron. 28, 491

This describes the



« The order in which the physically significant structures arise
is basically the inverse of that in the classical pancake picture:

first, high-density peaks,
then filaments between them,
and possibly afterwards the walls,

defined as the rest of the mass between voids.”

Bond, Kofman, Pogosyan 1996, Nature, 380, 603
(top of page 605)

This a description of the

this describes unfolding of four generic structures
in the excursion set with decreasing threshold.

It is universal for all generic fields, no exceptions!
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Figure 2. The ‘standard’ linking length b = (0.2 selects large parts of a
WDM simulation once the forces are captured accurately enough that fil-
aments do not artificially fragment. Density projections of the particles
belonging to the two most massive FoF ‘haloes’ in our WDM T4PM sim-
ulation of a 250 eV DM model are shown. Objects at z = 1 (top row) and
z = 0 (bottom row) are shown. These haloes have a mass of 2.7 x 10'* and
1.6 x 10" h™" Mgy (z = 1), and of 6.4 x 10" and 2.8 x 10" h™ ' Mgy
(z=0).

Angulo et al 2013



Three-dimensional numerical model of the formation
of large-scale structure in the Universe

A.A. Klypm and S. F. Shandarin The Keldysh Institute of Applied
Mathematics, Academy of Sciences of USSR, Miusskaja Sq. 4, Moscow 125047, USSR

Summary:

Received 1982 November 15; in original form 1982 April 28

(5) The reglons of high density seem to form a 1ng1e three-dimensional web structure.
However, it is not clear from our simulations whether honeycomb structure arises or not.

A new method of the analysis of
cosmological N-body simulations based
on computing the Lagrangian submanifold
suggested by Shandarin, et al (2012)
Abel et al (2012)

allowed fto demonstrate that

the irregular honeycomb structure

is formed in Dark Matter distribution.




Zeldovichs pancakes in 3D
N-body Simulations Zeldovich Approximation
(note: initial random number are different)

Sausbie 2010

based on computing Hidding, Shandarin, van de Weygaert 2014
Morse-Smale

complex



Multistream flows



2D example of triangulation
of Lagrangian submanifold

triangulation of

initial (Lagrangian)
plane

Decomposition of
a cube in tetrahedra
. in 3D

The Muddie setrabeda

. Avq
D

2N

T

Figure 1.9: The Tetrahedra orientation within a cube

projection of Lagrangian
submanifold on Eulerian space



Why detecting Zeldovich's pancake
in 3D simulations took so long?

Shandarin, Habib, Heitman 2012
see also
Abel, Hahn, Keuhler 2012

DENSITY
FIELD

MULTI-STREAM
FIELD

The Muddle setrabedin




All halos are embedded In filaments
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Fraction of volume with given number of streams - blue
Fraction of mass with given number of streams - red
Mean density in cells with given number of streams - black

fractions, mean density
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number of streams

102

| den >= 200*(mean den)

v_frac = 0.03%
m_frac = 16%
<den> = m_frac/v_frac
= 492



Fraction of points with a given number of streams
as a function of radius

M=6e14 M_sun
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Fraction of points with a given number of streams
as a function of radius
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Lagrangian submanifold
Number of streams field

Flip-Flop feld



Lagrangian Submanifold (LS) is
N-dim surface in 2N-dim space

Zel'dovich 1970

The Evaluation of Density:

density = (q[i+1]-qli]) / (r[i+1] - r[i]) Multi-Stream
Field

/

1 e S I Fip-Flop Field
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Phase space and Lagrangian submanifold in 1D
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Shandarin,
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Hidding 2014
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2D

# flip-flops

Flip-Flop Field in Lagrangian space in 512”2 simulation
(smooth initial conditions)

g_T

Shandarin, Medvedev, Hidding 2014, in preparation



3D simulation in LCDM model: box size 1 Mpc/h, Np= 256”3




Lagrangian Skeleton

and Flip-Flop Field



Lagrangian Eulerian
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Summary

The provides the necessary concepts and language
for describing complex geometry and dynamics of DM structures.

The sequence of formation of generic elements in DM structure is
1) pancakes,

2) filaments on the crossings of pancakes,

3) halos on the crossing of filaments

Halos are embedded in filaments and filaments are embedded in pancakes.
The skeleton of the Cosmic Web derived from Zeldovich approximation

allows to trace the dynamical evolution of the Cosmic Web
and provides quantitative characteristics of the web.



Summary

New fields: and fields reveal new properties of
the cosmic web. They are easy to compute from standard cosmological
simulations.

as a function of Eulerian coordinates allows to set
physical limit on the total volume and mass of the voids:

for LCDM and mass fraction 24%

The number of flip-flops as a function of Lagrangian coordinate stores the
information about the substructure of DM halos.



