ON THE INITIAL SHEAR FIELD OF THE COSMIC WEB

Graziano Rossi

Department of Astronomy and Space Science Sejong University – Seoul, South Korea

The Zeldovich Universe – IAU Symposium 308 Tallinn, Estonia – June 24, 2014

OUTLINE

- **1.** Dynamics of the cosmic web: key role of the initial shear field
- 2. 'Peak/dip picture' of the cosmic web: new conditional distributions
- 3. Conditional shapes and 'peak/dip excursion-set based' algorithm
- 4. Lyman- α forest, massive neutrinos, and the cosmic web

MAIN REFERENCES

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- G. Rossi et al. (2011), MNRAS, 416, 248
- G. Rossi (2012), MNRAS 421, 296-307
- G. Rossi (2013), MNRAS 430, 1486- 1503
- G. Rossi et al. (2014), A&A in press (arXiv:1401.6464)

COSMIC WEB AND STRUCTURE FORMATION

SF THEORIES

- Objects evolved from peaks in the initial field (Bardeen et al. 1986)
- Structure and clustering pattern of forming objects in the evolved nonlinear regime reflect initial conditions (Bond et al. 1991)

Key Literature — Zeldovich (1970), Doroshkevich (1970), Doroshkevich & Shandarin (1978), Kaiser (1984), Peebles (1984), Hoffman & Shaham (1984), Bardeen et al. (1986), Bond et al. (1986, 1991), Bertschinger (1987), Jones et al. (1988), van de Weygaert & Bertschinger (1996)

Aragon-Calvo et al. (2010)

INITIAL SHEAR FIELD

Web-like network shaped by **tidal field** \rightarrow initial shear field plays a key role in shaping the cosmic web (as opposed to the inertia tensor)

- Doroshkevich (1970) → first to apply these methods to study the formation of cosmic structures
- Statistical properties of the eigenvalues of the shear tensor (Doroshkevich & Shandarin 1978) → pancakes
- $\bullet\,$ Statistics of initial density field \to classification of structures, mass function, merger trees, ...

SHEAR TENSOR AND DENSITY HESSIAN

- T \rightarrow shear tensor \rightarrow related to gravitational field \rightarrow eigenv. λ_i
- $H \rightarrow$ inertia tensor \rightarrow related to density field \rightarrow eigenv. ξ_i
- $T|H \rightarrow$ conditional shear given density Hessian \rightarrow eigenv. ζ_i

DYNAMICAL EVOLUTION

MODEL FOR HALO SHAPES

Rossi et al. (2011)

イロン イロン イヨン イヨン 三日

TWOFOLD PROCEDURE

- (1) Nonlinear dynamics: gravity \rightarrow ellipsoidal collapse model
- (2) Initial conditions: statistics \rightarrow excursion sets formalism

DOROSHKEVICH'S CELEBRATED FORMULA

UNCONDITIONAL DISTRIBUTION OF SHEAR EIGENVALUES

$$p(\lambda_1, \lambda_2, \lambda_3) = \frac{15^3}{8\sqrt{5}\pi} e^{-\frac{3}{2}(2k_1^2 - 5k_2)} (\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)$$

$$k_1 = \lambda_1 + \lambda_2 + \lambda_3 \equiv \delta_{\mathrm{T}}$$

$$k_2 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3$$

- Ordering of the eigenvalues is $\lambda_1 \ge \lambda_2 \ge \lambda_3$
- Derived by Doroshkevich (1970)
- Can derive partial distributions $\rightarrow p(\lambda_1)$, $p(\lambda_2)$, etc.
- Neglects the fact that voids are maxima of the source displacement, or minima of the density field

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

JOINING TWO DESCRIPTIONS

Basic idea \rightarrow Develop formalism which allows distinguishing between peaks/dips and random positions in space

- Need to consider the density Hessian, in addition to the shear field, and characterize their correlations
- Merge excursion-set-based approach + peaks theory

CONDITIONAL DISTRIBUTION OF TIDAL FIELD HAVING CURVATURE H

$$p(\mathbf{T}|\mathbf{H},\gamma) = \frac{15^3}{16\sqrt{5}\pi^3} \frac{1}{\sigma_{\mathrm{T}}^6(1-\gamma^2)^3} \mathrm{e}^{-\frac{3}{2\sigma_{\mathrm{T}}^2(1-\gamma^2)}(2K_1^2-5K_2)}$$

(日) (同) (E) (E) (E) (E)

EXTENDED DOROSHKEVICH'S FORMALISM

CONDITIONAL DISTRIBUTION OF SHEAR EIGENVALUES

$$p(\zeta_1, \zeta_2, \zeta_3 | \gamma) \equiv p(\lambda_1, \lambda_2, \lambda_3 | \xi_1, \xi_2, \xi_3, \gamma) \\ = \frac{15^3}{8\sqrt{5}\pi} \frac{1}{(1 - \gamma^2)^3} e^{-\frac{3}{2(1 - \gamma^2)}(2K_1^2 - 5K_2)} (\zeta_1 - \zeta_2)(\zeta_1 - \zeta_3)(\zeta_2 - \zeta_3)$$

G. Rossi (2012) - MNRAS 421, 296-307

3

$$\begin{split} & \mathcal{K}_{1} = \zeta_{1} + \zeta_{2} + \zeta_{3} = k_{1} - \gamma h_{1} \\ & \mathcal{K}_{2} = \zeta_{1}\zeta_{2} + \zeta_{1}\zeta_{3} + \zeta_{2}\zeta_{3} = k_{2} + \gamma^{2}h_{2} - \gamma h_{1}k_{1} + \gamma \tau \\ & \tau = \lambda_{1}\xi_{1} + \lambda_{2}\xi_{2} + \lambda_{3}\xi_{3} \\ & k_{1} = \lambda_{1} + \lambda_{2} + \lambda_{3}, \quad k_{2} = \lambda_{1}\lambda_{2} + \lambda_{1}\lambda_{3} + \lambda_{2}\lambda_{3} \\ & h_{1} = \xi_{1} + \xi_{2} + \xi_{3}, \quad h_{2} = \xi_{1}\xi_{2} + \xi_{1}\xi_{3} + \xi_{2}\xi_{3} \\ & \zeta_{i} \equiv (\lambda_{i}|\gamma, \xi_{i}) = \lambda_{i} - \gamma\xi_{i} \end{split}$$

CONDITIONAL DISTRIBUTIONS

G. Rossi (2012) – MNRAS 421, 296-307

Э

SHAPE PARAMETERS: EXTENSIONS

New formalism (density web vs strain web) which combines

- Bardeen et al. (1986) \rightarrow density \rightarrow density Hessian
- Bond & Myers (1996) \rightarrow gravity \rightarrow shear

G. Rossi (2013) - MNRAS 430, 1486- 1503

$$\begin{array}{l} \textbf{DENSITY} \rightarrow \textbf{HESSIAN} & \textbf{GRAVITY} \rightarrow \textbf{SHEAR} \\ \textbf{e}_{H} = \frac{\xi_{1} - \xi_{3}}{2\delta_{H}}, \ \textbf{p}_{H} = \frac{\xi_{1} + \xi_{3} - 2\xi_{2}}{2\delta_{H}} & \textbf{e}_{T} = \frac{\lambda_{1} - \lambda_{3}}{2\delta_{T}}, \ \textbf{p}_{T} = \frac{\lambda_{1} + \lambda_{3} - 2\lambda_{2}}{2\delta_{T}} \\ \textbf{EXTENDED FORMALISM} \\ \\ \textbf{\Delta}_{T|H}\textbf{E}_{T|H} = \frac{\zeta_{1} - \zeta_{3}}{2} = \delta_{T}\textbf{e}_{T} - \gamma\delta_{H}\textbf{e}_{H}, \quad \textbf{\Delta}_{T|H}P_{T|H} = \frac{\zeta_{1} + \zeta_{3} - 2\zeta_{2}}{2} = \textbf{E}_{T|H} - (\zeta_{2} - \zeta_{3}) \end{array}$$

- Can express all in terms of unconditional relations
- Can express the conditional joint probability of initial halo/void shapes

CONDITIONAL ELLIPTICITY & PROLATENESS

G. Rossi (2013) - MNRAS 430, 1486-1503

THE 'PEAK-DIP EXCURSION-SET-BASED' ALGORITHM

THE EXCURSION SET APPROACH

Pick a particle at random and smooth the linear density field over ever smaller spheres around it, until the criterion for collapse at some redshift is satisfied. The mass in the sphere is then identified as that of the collapsed object to which the particle belongs

- Statistics of the four-dimensional field F(r, R_f)
- Trajectories of the field as a function of the filter radius at a fixed position (with F the linear overdensity)
- Bound structures forming at t are regions above some initial critical overdensity F_{cr}
- A diffusion-like problem
- More rigorous treatment → see Maggiore & Riotto (2010)

EXTENSION TO PEAKS/DIPS \rightarrow Rossi (2012, 2013)

- Determine δ_T, e_T, p_T which are simple combinations of the eigenvalues
- Check if (δ_T, e_T, p_T) cross the barrier B(δ_T, e_T, p_T) at the mass-scale σ_T
- If so exit if not, continue the loop

COSMIC WEB AND LYMAN- α FOREST

Lyman- α forest and massive neutrinos

G. Rossi

E

PRODUCTS

A suite of 48 hydrodynamical simulations with massive neutrinos

- Typical set (3 sims.) $\rightarrow 100 \ h^{-1} \text{Mpc}/768^3$ (a), 25 $h^{-1} \text{Mpc}/768^3$ (b), 25 $h^{-1} \text{Mpc}/192^3$ (c)
- With splicing technique \rightarrow equivalent of 100 h^{-1} Mpc/3072³
- Full snapshots at a given redshift (z = 4.6 2.2, Δz = 0.2)
- 100,000 quasar sightlines per redshift interval per simulation

Simulation Set	$M_{ u}$ [eV]
BG a/b/c	0
NUBG a/b/c	0.01
NU01 a/b/c	0.1
NU01-norm a/b/c	0.1
NU02 a/b/c	0.2
NU03 a/b/c	0.3
NU04 a/b/c	0.4
NU04-norm a/b/c	0.4
NU08 a/b/c	0.8
NU08-norm a/b/c	0.8

Group I

Group	11
-------	----

Simulation Set	M_{ν} [eV]
$\gamma+NU08 a/b/c$	0.8
H ₀ +NU08 a/b/c	0.8
ns+NU08 a/b/c	0.8
$\Omega_{\rm m}+$ NU08 a/b/c	0.8
σ_8 +NU08 a/b/c	0.8
T ₀ +NU08 a/b/c	0.8

G. Rossi et al. (2014), A&A (arXiv:1401.6464)

• Group I \rightarrow Best-guess and neutrino runs

Group II → Cross-terms

COSMIC WEB AND LYMAN- α FOREST

1D LYA BOSS POWER SPECTRUM

THREE MAIN MESSAGES

1. New theoretical framework and formulae for characterizing the initial shear field

2. New 'peak-dip excursion-set-based' algorithm

3. Novel suite of hydrodynamical simulations for the Lyman- α forest with massive neutrinos

Eq. (47) - G. Rossi (2012), MNRAS 421, 296-307

$$p(\zeta_1, \zeta_2, \zeta_3 | \gamma) = \frac{15^3}{8\sqrt{5}\pi} \frac{1}{(1-\gamma^2)^3} \exp\left[-\frac{3(2K_1^2 - 5K_2)}{2(1-\gamma^2)}\right] (\zeta_1 - \zeta_2)(\zeta_1 - \zeta_3)(\zeta_2 - \zeta_3)$$

VISIT SEJONG UNIVERSITY IN SEOUL!

200

SEJONG UNIVERSITY IS CLOSE TO GANGNAM!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

BASIC NOTATION (1)

- Ψ displacement field
- Φ potential of the displacement field
- S_{Ψ} source of the displacement field
- q Lagrangian coordinate, x Eulerian coordinate,
- T_{ij} shear tensor of disp. field \rightarrow eigen. $\lambda_1 \ge \lambda_2 \ge \lambda_3$, rms σ_T
- H_{ij} Hessian matrix \rightarrow eigen. $\xi_1 \ge \xi_2 \ge \xi_3$, rms σ_H
- J_{ij} Jacobian of the displacement field (i, j = 1, 2, 3)

$$\mathbf{x}(\mathbf{q}) = \mathbf{q} + \Psi(\mathbf{q})$$

$$J_{ij}(\mathbf{q}) = \frac{\partial x_i}{\partial q_j} = \delta_{ij} + T_{ij}$$

$$T_{ij} = \frac{\partial \Psi_i}{\partial q_j} = \frac{\partial^2 \Phi}{\partial q_i \partial q_j}, \quad H_{ij} = \frac{\partial^2 S_{\Psi}}{\partial q_i \partial q_j}$$

$$S_{\Psi}(\mathbf{q}) = \sum_{i=1}^3 \frac{\partial \Psi_i}{\partial q_i} \equiv \sum_{i=1}^3 \frac{\partial^2 \Phi}{\partial q_i^2}$$

BASIC NOTATION (2)

 Φ Gaussian random field determined by P(k), k wave number, $W^2(k)$ additional smoothing window function. Density field described by S_{Ψ} , also Gaussian. Correlations between these fields:

$$\langle T_{ij} T_{kl} \rangle = \frac{\sigma_T^2}{15} (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

$$\langle H_{ij} H_{kl} \rangle = \frac{\sigma_H^2}{15} (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

$$\langle T_{ij} H_{kl} \rangle = \frac{\Gamma_{TH}}{15} (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

$$\sigma_T^2 = S_2 \equiv \sigma_0^2, \sigma_H^2 = S_6 \equiv \sigma_2^2, \Gamma_{TH} = -S_4 \equiv -\sigma_1^2$$

$$S_n = \frac{1}{2\pi^2} \int_0^\infty k^n P(k) \ W^2(k) dk$$

$$\sigma_j^2 = \frac{1}{2\pi^2} \int_0^\infty k^{2(j+1)} P(k) \ W^2(k) dk \equiv S_{2(j+1)}$$

$$\gamma = \Gamma_{TH} / \sigma_T \sigma_H = \frac{\sigma_1^2}{\sigma_0 \sigma_2} \equiv \gamma_{BBKS}$$