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Geometry of random fields: 3D

Cosmology
Doroshkevich, 1970
Arnold, Zeldovich, Shandarin, 1982
Bond, Bardeen, Kaiser, Szalay, 1986

Geometrical questions:

• abundance and shapes of
peaks of different scale

• Length of filamentary bridges

• Connectivity of peaks by
filamentary ridges

• Relation between the
properties of filaments and
clusters

Sims: Horizon project + skeleton
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From Peaks to Filaments, Skeleton of the Cosmic Web

• The high rare peaks of the
field largely define how
large scale structure looks
like.

• The Skeleton of LSS traces
the filamentary bridges that
form the Web between
them and provides the next
level of detail to LSS
understanding.

Initial Final
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Skeleton as tracer of the filaments

Dark matter skeleton in
4π simulation

Halo spin vs the skeleton
Codis et al, 2012
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Geometrical measures for random fields

Starting point
Let us think about such properties of a random field ρ as Euler
characteristic (genus), density of maxima, length of skeleton. Their
computation reguire knowledge of the joint distribution

P (ρ,ρi ,ρi j , . . .)

of the field ρ and its first ρi , second ρi j (Hessian matrix) and perhaps
higher derivatives, for instance

n m a x (ν ) =

∫

0≥λ1≥λ2≥...

P (ρ = ν ,ρi ,ρi j )δ(ρi )|ρi j |dρi j

Usual approach is to deal with it in the Hessian eigenvalue space, since
that’s where the boundary conditions are the simplest.
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Towards the local description of the Skeleton
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Towards the local description of the Skeleton

(∇∇ρ) ·∇ρ =λ∇ρ
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Local description of the Skeleton

Definition
Along the ridge the gradient of the field ∇ρ is aligned with the direction of
the least curvature. Formally, skeleton is the set of points where (with
additional restrictions)

S ≡
�

∇∇ρ ·∇ρ
�

×∇ρ = 0

Features
Local definition introduces point process that allows analytical treatment
similar to statistics of extrema.
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Stiff Approximation: Theory fits Simulations (of course)

�
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�

stiff
∝

1

RN−1
∗

∫

dλ1 . . . dλNP (ν ,λ1, . . . ,λN ) |λ2 · · ·λN |

-4 -2 2 4
Η

1.5

2.0

2.5
dL�dΗ�PHΗL

-4 -2 2 4
Η

1.5

2.0

2.5
dL�dΗ�PHΗL

Notable Result:
At high densities ν =ρ/σ0 density of filaments is enhanced

2D : ∝ γν , 3D : ∝ (γν )2
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Non-Gaussian expansion for geometrical statistics

• To treat non-Gaussianities the idea is to expand P (ρ,ρi ,ρi j ) into
orthogonal polinomials around the Gaussian approximation like

P(x ) =G (x )
�

1+
∑

n 〈x n 〉c Hn (x )
�

• The trick to avoid difficulties is an appropriate choice of variables:

• that are invariant wrt symmetries of the problem (isotropy)
• that are polynomial in the field quanities (λ’s are no good)
• that simplify the Gaussian limit, being as uncorrelated as possible

• Useful set is: I1, · · · , IN , q 2, ζ≡ ρ+γI1

1−γ2

where In are N polynomial rotation invariants of the Hessian matrix ρi j ,
I1 = Trρi j , . . . , IN = det |ρi j |

(and I2 . . . IN−1 are built from the minors of orders 2 to N-1 )

• Actually, better to use more ’irreducible’ combinations Ji , in N D-space

J1 = I1 , Js≥2 = I s
1 −

s
∑

p=2

(−N )p C p
s

(s −1)C p
N

I s−p
1 Ip
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Orhogonal polymonial expansion for 2D P (ρ,q 2, J1, J2)

Gaussian limit JPDF

G2D(ζ,q 2, J1, J2) dζdq 2dJ1dJ2 =
1

2π
e−

1
2 (ζ2+2q 2+J 2

1+2J2)dζdq 2dJ1dJ2

serves as the weight for defining the expansion polynomials in

• ζ, J1 – ([−∞,∞], gaussian weight) – Hermite

• q 2, J2 – ([0,∞], exponential weight) – Laguerre.

P2D(ζ,q 2, J1, J2) =G2D×
h

1+

∞
∑

n=3

i+2j+k+2l=n
∑

i ,j ,k ,l=0

(−1)j+l

i ! j ! k ! l !

D

ζi q 2 j
J1

k J2
l
E

GC
Hi (ζ)L j

�

q 2
�

Hk (J1)L l (J2)







This is an expansion to all orders in powers of the field n .
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“Gram-Charlier” coefficients of expansion 〈. . .〉GC

are
D

ζi q 2 j
J k

1 J l
2

E

GC
=

j ! l !

(−1)j+l

D

Hi (ζ)L j

�

q 2
�

Hk (J1)L l (J2)
E

=
D

ζi q 2 j
J k

1 J l
2

E

+ . . .

which for order n = i +k +2j +2l

n = 3 are equal to the simple moments, 〈ζJ2〉GC = 〈ζJ2〉
n ≤ 5 are equal to cumulants,




ζq 2 J1
�

GC =



ζq 2 J1
�

c

where in the cumulants our quadratic variables are
reverted to field quantities

⇒ expansion coefficients can be predicted by pertrubation theories
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Euler characteristic (genus) as a function of threshold

General expression in N D

χ(ν )
2
= (−1)N

∫ ∞

ν

d x

∫

d q 2q N−1δN
D (q

2)

∫ N
∏

s=1

d JsPND(. . .) IN

can be integrated to give “moment” expansion to all orders

χ(ν ) =
1

p
2πR∗

exp

�

−
ν2

2

�

×
2

(2π)N /2

�

γ
p

N

�N





HN−1(ν )+

+
∞
∑

n=3

N
∑

s=0

γ−s

i+2j=n−s
∑

i ,j=0

(−N )j+s (N −2)!!L
( N−2

2 )
j (0)

i !(2j +N −2)!!

D

x i q 2 j
Is

E

G C
Hi+N−s−1(ν )







(cf first term: Matsubara 1994-2005)

with coefficients that can be predicted by perturbation theories
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How non-Gaussianity develops, eq 2D Euler charachteristic

Excitation of Hermite modes of alternating parity
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Statistics versus observable filling factor

ν f is the filling factor expressed as threshold units via its
non-Gaussian expansion. σ= 0.18 (with parity cleaning)
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Extrema counts and more
Formalism to study popular and novel geometrical statistics in non-gaussian regime

• Genus in ND is fully described

• 2D Extrema density (CMB case) computed analytically

• 3D Extrema density (LSS)
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• Peak shapes, skeleton length, correlation of velocity flow and filaments



Geometry of Random Fields Skeleton of the Cosmic Web non-Gaussian fields Anistropic non-Gaussian fields Summary

Non-Gaussian Skeleton length (Gay et al. 2012)
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Extension to anisotropic statistics

• In cosmology we do not always deal with isotropic fields, or statistics

• Obvious example - density in the redshift space

• more subtle case – skeleton statistics of the filaments are not isotropic !
(there is a angle dependence between local directions of gradient and
Hessian)

• The generalization of our approach is straightforward - use symmetries that
remain, define polynomial variables, find uncorrelated combinations and
expansion polynomials as determined by the Gaussian limit.

• Done for the skeleton in Gay, Pichon, Pogosyan, 2012 and for the redshift
space in Codis, Pichon, Pogosyan, Bernardeau, Matsubara 2013. for the
redshift space
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Polymonial expansion for P3D in redshift space

Symmetry:
Rotational around the line of sight (LOS along 3rd coordinate)

Variables:

linear(4) x , x3, x33, J1⊥ = x11+x22

quadratic(3) q 2 = x 2
1 +x 2

2 , Q2 = x 2
13+x 2

23, J2⊥ = (x11−x22)2+4x 2
12

cubic(1) Υ=
�

x 2
13−x 2

23

�

(x11−x22)+4x12x13x23

Gaussian limit JPDF

G (x ,q 2
⊥,x3 ζ,J2⊥,ξ,Q2,Υ) =

1

4π3pQ4 J2⊥−Υ2
e−

1
2 x 2−q 2

⊥−
1
2 x 2

3−
1
2ζ

2−J2⊥− 1
2ξ

2−Q2

Uniformly distributed Υ∈
�

−Q2
p

J2⊥,+Q2
p

J2⊥
�

can be integrated over for
Minkowski functionals, extrema . . .
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Euler characteristic in redshift space

χ2+1(ν ) =
e−ν2/2

8π2





σ1‖σ
2
1⊥

σ3 H2(ν )+
∞
∑

n=3

χ
(n )
2+1





with non-Gaussian corrections χ (n )2+1, given, to all orders, by

χ (n )2+1(ν ) =
σ2

2⊥σ2‖

σ2
1⊥σ1‖

�

∑

σn

(−1)j+m
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⊥

¬

x i q 2j
⊥ x 2m

3

¶
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¬
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3

�
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+
∑
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¬

x i q 2j
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3

�
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�¶
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⊥ x 2m

3

�

x33(J 2
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�
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��¶
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�

with coefficients that can be predicted by perturbation theories
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Euler characteristics in redshift space

σ= 0.18, f = 1
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Using non-Gaussianity and redshift distortions of geometrical
measures of the Cosmic Web to recover

β =Ω0.55/b
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Conclusions

• We progressed beyond fixed-order non-gaussian corrections, to complete
representation of geometrical statistics via the moments that are predicted
by the theory. Examples are perturbation theory of the gravitational
clustering or non-linear effects at inflationary stage.

• Direct utilization of the symmetries of the problem makes many previously
untractable calculations possible.

• We now know the non-gaussian expansion to all orders (and in arbitrary
dimension) for the Euler statistic, and isosurface area.

• Dependence of extrema count on non-gaussian corrections is understood.

• and so is of the differential length of the (local) skeleton.

• Extension of the formalism to redshift space has been developed.

• The path is open for application of geometrical descriptors to CMB data,
D(z ) reconstruction, etc.
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