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Outline

® How discs build up from persistent cosmic web? = :
® How dark halo's spin flip relative to filament?

® VWhy are they initially aligned with filaments!?
Why the transition mass? Eulerian view

® What is the corresponding Lagrangian theory!?
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Galactic morphology is driven by AM acquisition through anisotropic secondary infall,
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Outline

® How discs build up from persistent cosmic web? ™
® How dark halo's spin flip relative to filament?

® VWhy are they initially aligned with filaments!?
Why the transition mass? Eulerian view

® What is the corresponding Lagrangian theory!?

Galactic morphology is driven by AM acquisition through anisotropic secondary infall,
coming from larger scales, which are less dense, hence more steady,
cold flows provide the link.

Where galaxies form does matter, and can be traced back to ICs
Flattened filaments generate point-reflection-symmetric AM/vorticity distribution:
they induce the observed spin transition mass & helicity of cold flows
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The Hubble diagram:a crude theorist's view

What drives coherent secondary infall?
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The Hubble diagram: a crude theorist's view

o

What drives coherent secondary infall?
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Context

- It's the angular momentum “stupid”
Something beyond mass function
- @ z>>| :nurture versus nurture

- warps 1991 2
- thick disks 2001 ??




Part I outline

@ 4 ftrivial facts about galaxies in their web

@ the proposition

@ various proofs of various value?




Part I Outline

@ 4 trivial facts about galaxies in their web

e what's a disc?

e what's a void?

e what's a shock?

e what do numerical hydro suggest?

@ The proposition

@ Various proofs of various value?




Fact number one
“theoretically”, a galactic disc:

\

An ensemble of ring made of gas,

* turning around the same axis

* whose outer parts rotate with
more angular momentum (flat rotation curve)
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Fact number three
“theoretically”, a shock:

Normal to shock
Pre shock flow A

: \ Post shock flow

- ]
L — :
- —-—

Plane of shock

Gas, unlike dark matters, shocks (iso-T) and
follows closely the cosmic web

=P cosmic web,is important for galaxy morphology
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Fact number three
“theoretically”, a shock:

Normal to shock
Pre shock flow

Post shock flow

Plane of shock

Gas, unlike dark matters, shocks (iso-T) and
follows closely the cosmic web

=3 cosmic web,is important for galaxy morphology
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act number three filament
“theoretically”, a shock:

wall

Normal to shock
Pre shock flow A

Post shock flow

Plane of shock

Gas, unlike dark matters, shocks (iso-T) and
follows closely the cosmic web

=3 cosmic web,is important for galaxy morphology
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@ high z / low mass

Paradigm
shift

—

e~ cof Binney 77 !!

log(T/u)

; Gas shocks
= = isothermally —
IGM in LSS streoams

é
shielding (?7)
® hot corona

Rees Ostriker 77 .
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Fact number four

The Virtual (hydrodynamical) universe .

Cosmic web SHARPER

2 kpc

Agertz et al. (2009)

we see cold flows + recurrent disk reformation
LSS drives secondary infall & SPIN ALIGNMENT

Thursd June 26



Context & clues

standard
hierarchical
clustering picture

gthere are discs on the sky and in numerical simulations

gdisc must have a coherent stratified angular momentum

/

9
9

L
-

completely
useless
(nautical) analogy
that probably only
the author
understands

ggalaxies form and evolve on the cosmic web (anisotropic PBS)

ggas shocks isothermally during shell crossing, follows filaments closely

gsurrounding void/wall repel (contrast<0) contribute to secondary infall
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Part I Outline

@ 4 ftrivial facts about galaxies in their web

@ the proposition

@ various proofs of various value?




The proposition in one sentence

Disks form because LSS are large (dynamically
young) and (partially) an-isotropic :
they induce persistent angular momentum
advection of cold gas along filaments
which stratifies
accordingly so as to (re)build discs
continuously.
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Part I Outline

@ 4 trivial facts about galaxies in their web
@ The proposition
@ Various proofs of various value?

e smoking gun?

® robust statistics?

¢ |lots of hand waving ??




Clues from LSS
"Proof by halo centric environment”
a.k.a

proof by hypnosis,
fishy analogy &

mathematical jargon




Time line of LSS
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Drift of filaments

Time-line evolution
of filaments

void induced
COSMIC

drift
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Drift of filaments

Time-line evolution
of filaments

void induced
COSMIC

drift
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Drift of filaments

Time-line evolution
of filaments

void induced
COSMIC

drift

(a) (h)
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Two pts correlation of critical pts defines cosmic cristal

From furst principles...

Peak-(Saddle Wall)

Peak-Void
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2D Cartoon of "ideal" cosmic
environment :

Mean local cosmic initial condition
homeomorphic to such crystal

Thursday, June 26, 14
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Mean local cosmic initial condition
homeomorphic to such crystal

3D "ideal"cosmic crystal
Cartoon: e

i

/

maximum

Net torque !

&

minimum

22
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Mean local cosmic initial condition
homeomorphic to such crystal

3D "ideal"cosmic crystal
Cartoon:

maximum

Net torque !

7

=t wall type saddle minimum

biagzzsed by assumed isotropy: generically one fil+wall
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Do we see this?

"Proof" by visualisation of
hydrodynamical simulation

a.k.a

proof by pretty pictures
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gas tracing
particle:
follow shocks

¥

typical setting
one wall one—

filament
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gas tracing filament
particle:—_
follow shocks

typical settingg
one wall one— Rt
filament |

Thursday, June 26, 14



Note the high helicity of inflow:
AM rich quasi-polar accretion Explain this !
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Can it be made quantitative?

"Proof” by robust statistical analysis

a.k.a

lies, damn lies and statistics

Thursday, June 26, 14



Anisotropic accretion: cold flows driven by LSS
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- Use LSS dynamics to statistically analyse AM infall @ Ruvir
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Filamentary Accretion:
coherent orientation
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Can we trace this back in time?

"Proof” by tagging

a.k.a "Proof” by looking at ONE object !
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Angular momentum rich filamentary #

cold ﬂoWs: progenitor of thin dist
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Angular momentum rich filamentary &
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The fate of
cold gas

N
\'\

0.0000

/ Buddle of position of
gas tracer particles at different
epochs (high z)
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Stratified mass and momentum
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Mass 1n dise originate from filaments
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Angular momentum 1n disc originate

from filaments
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Disks form beQause LSS are large (dynamically
young) and (partially) an-isotropic :
they induce: pers,{\_‘;tent angular momentum
advectl?xn ‘of colc gas along filaments
"’-.j"%Vllth s ratlﬁ es
accordlnglfgaﬁs to. (re)bmld discs
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This is the raison d’étre of cosmic web :-) ™
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@ How discs build up from persistent cosmic web?

@ How dark halo’s spin flip relative to filament?

@ Why are they initially aligned with filaments?
Why the transition mass?

@ What is the corresponding Lagrangian theory?




PART 11

What's happening on
larger scales?

l.e Where do galaxies form in our Universe?
What are the dynamical implications?
Why?




Part II Outline

@ Where do galaxies form? Nick+ anisofropy

@ What is the spin orienfation w.r.t. cosmic web
@ What do low mass galaxies do?

@ What do high mass galaxies do?

The Eulerian view of spin/LSS connection




dark halos don't form anywhere

\ '

Peak background split in




without
boost

collapse o
threshold

with filamentary
boost
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_ Peak background splitin 3D

.-"-’/’

withom |/
boost

Does this anisotropic biassing have
a dynamical sighature? yes!

42
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without

boost
boost

Does this anisotropic biassing have
a dynamical sighature? yes!
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Horizon 4Pi:
DM only
2 Gpc/h periodic box
4096° DM part.

43 million dark halos at
z=0

(Teyssier et al, 2009)
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Horizon 4Pi:
DM only
2 Gpc/h periodic box
4096° DM part.

43 million dark halos at
z=0

(Teyssier et al, 2009)

skeleton
follow filaments
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Horizon 4Pi: e
DM only

2 Gpc/h periodic box

4096° DM part.
43 million dark halos at
z=0

(Teyssier et al, 2009)
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mass transition:

M < Mt : aligned

M > Mt : perpendicular

Thursday, June 26, 14



1.15
1.10
1.05
+ 1.00
0.95
0.90

0.85

Pl | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I_I‘
E perpendicular .
1 aligned 14:1
X It
:Os,\ I":
o, =
PR A > .
A %) S
O\ Yy ya

*

HTI

| ]
{'
A"

—4 log M :14.00
—-4 |log M :13.30
— -4 log M :12.80
---@® log M :12.50

— — A Jog M :12.00 —

I_II|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|_I
-0.5 0.0 0.5

cos(0)

mass transition:

My = 4 - 1012 Mg

M < Mt : aligned

M > Mt : perpendicular

- In agreement with other numerical studies e.g Bailin & Steinmetz (2005); Aragon-Calvo et al. (2007,2013); Hahn et al. (2007); Paz et al. (2008)
- Confirmed by observations e.g Tempel et al 2013 using the SDSS data
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T T T T T T mass transition:
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Voids/wall saddle

repel...
winding of walls
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winding of walls
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Winding of walls
onto filaments
generate spin

//

to filament

->

Vorticity?
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halos catch up with
each other along
the filaments
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/T . _

< Wall + filament boost

If pancake = filament

—> mergers along €¢
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@ How discs build up from persistent cosmic web?
@ How dark halo's spin flip relative to filament?

@ Why are they initially aligned with filaments?
Why the transition mass? Eulerian view

@ What is the corresponding Lagrangian theory?




Swirling around filaments:

Are large-scale structure spinning up low mass halos!?

>4 ,
Y T W
N 4’(” ;/»

The Eulerian vi'e‘w gp‘;rv/LSS connechon g

La nuit eto:lee,Van Gogh, I989
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Part III Outline

@ Where is the vorticity/helicity ?
@ How is it distributed across a filament?
@ What does it do to the spin low mass galaxies ?

@ What is its relation to the transition mass ?

The Eulerian view of spin/LSS connection




Problematic

Why is the spin of low mass halos preferentially
alighed with cosmic web ?

Strateqy

. |dentify the geometric locus of vorticity & its
alignment with cosmic web.

* Understand vorticity generation within cosmic web.

. Study alignment of vorticity & spin of halos.

indeed

* In the perfect fluid approximation, on large scales, flow is
laminar without vorticity.

* Vorticity is generated when the stress tensor becomes non
zero during shell crossing.
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Locus of vorticit
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Density & vorticity slice in a DM simulation.
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Locus of vorticity
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Locus of vorticity
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Locus of vorticity
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A Qualitative understanding
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Focussing on main filament
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Alignement of vorticity with cosmic web

5
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Alignement of vorticity with cosmic web
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Cross section of vorticity in caustic
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Generation of vorticity : wall winding

back to WDM...

J'-' 'f - - 5 -P“l
F .-"E .-".
i o

Two sets of trajectories of particles reaching one caustic quad.

3 flows crossing in filaments generate vorticity.
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S, vorticity cross section
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fully consistent with the winding wall scenario
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wall -zero vorticity -
— alignment —
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Alignement of vorticity with cosmic web

Alignment of vorticity and cosmic web
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Revisit
Alignement of spin with cosmic web
Spin alignment first INCREASES with mass !!!
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Revisik MAsaamasennatatees

. ] i ) ~ vorticit
Alignement of spin with cosmic web o e)ége

Spin alignment first INCREASES with mass !!!
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Vorticity map
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@ How discs build up from persistent cosmic web?
@ How dark halo's spin flip relative to filament?

@ Why are they initially aligned with filaments?
Why the transition mass? Eulerian view

@ What is the corresponding Lagrangian theory?




Tidal torque theory with a
peak background split near a

saddle




Part IV Outline

® The Idea

o walls/filament/peak locally bias differentially
tidal and inertia tensor: spin alignment reflect this

@ The picture

@ Geometry of spin near saddle: point reflection
symmetric distribution

@ The Maths

@ Very simple ab initio prediction for mass transition +
helicity

The Lagrangian view of spin/LSS connection
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Tidal/Inertia mis-alignment

spin  filament

inertia

Tidal field pancake

in saddle mid p'laﬁe
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Tidal/Inertia mis-alignment
peak

spin  filament S g /

inertia

Tidal field pancake

~spin "~ filament

i saddle m|d 'p"la“r'i‘e away fronﬁlé'add-le_:f-hﬁid plane
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Spin structure et
near Saddle y /0

Hessian

Tidal
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AM Zeldovitch flow

vectors

— filament

Point reflection symmetry
follows from
‘spin one’ property of
spin !
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Zeldovitch flow

filament

=

T~

AM
_ vectors
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10 10

Spin orientation

Lg @ x=1/10

Lg @ z=1/10

Ly @ y=1/10

Ltheta cross section
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€ijk 5“’ wlj wk helicity cross
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TTT@ saddle?

the Gaussain joint PDF of the
derivatives of the field, X = {xz;;,Zijk,Tijri} and Y =
{vii,Yiik, Yijkl } in two given locations (r, and r, separated
by a distance r = |r; — ry|) obeys

Z0,0,2 + Z0,2,0 + 2,00 =V, T1,0,2 + Z1,2,0 + 3,00 =0, 3 D
PDF(X To,1,2 + o,3,0 + T2,1,0 = 0, Zo,0,3 + To,2,1 + T2,0,1 =0,
1
K11 = 3 (22,02 — 20,0,4 — 20,2,2 — X0,4,0 + T2,2,0 + 2Z4,0,0) ,
K1,2 = Z21,1,2 + 21,3,0 + £3,1,0, K1,3 = 21,0,3 + Z1,2,1 + £3,0,1,
. 1
k2,2 = = (T0,2,2 — ©0,0,4 + 2T0,4,0 — 2X2,0,2 + T2,2,0 — T4,0,0) ,
Pl 9| v | 2
K23 = 20,1,3 + 20,3,1 + Z2,1,1 . (B4)

subject to the saddle constraints (2D)

height .
xo2 +T20=v, 1,2+ 230 =0, 0,3+ 22,1 =0, #€0 gradient

1 :
5 (4,0 — To,4), kSIin(20) = —x13 — 231 .
barametrized curvature

Kk cos(20) =
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- Define the spin at point r, along the z direction as the
anti-symmetric contraction of the de-traced tidal field and
hessian:

(2D)
L(ry) =€ii¥uYjmmi = (¥2,0 — Y0,2) (¥1,3 + ¥3,1) +
y12,1 (yo,4 — Ya,0) y12’1 (Y4,0 — Yo,4) - (A3)

It is then fairly straightforward to compute the correspond-
ing constrained expectation, (L|pk), for L as

L.(r,0,k,v)= / L(Y)PDF(X,Y|pk)dXdY.  (A4)

é@@@ e.g.forn=-2  Incredibly simple prediction !

r*sin(20) _ -2
Ls :\n 1451 )e 2 (\/gn ('r2 — 4) cos(26) + 69’ :

N asymmetry
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2D Theory oledaI Torque @ saddle?

L, o sin 20 exp(

L. x r*sin 20 at small radi

—7%) at large rad
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Figure 4. left: cross section of 2D Lagrangian patch near a saddle
point; right: corresponding momentum (colour coded) and trans-

locitv flow.

Verse ve
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Llnk W|th Eulerian vorticity!

along the filamen
N // .

= T ozset'.'a%y
@ | density caustic
i;;.map

Mpc/h

AM map

\_;
o

Figure 5. top: Density caustic; Bottom: Zeldovitch mapping of
the spin distribution
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Fulerian versus Lagrangian theory?

Yet another completely
useless diagram

that only (7) tidal sphere of influence
onto dark halo
the author understands
© © % 9% o o 5 % 3 Lagranglan quadrant
tidal sphere of influence of Lagrangian quadrant ° F'fSt progenitor

filament and wall second progenitor
Lagrangian halo

0 o e o %
Eulerian caustic, 2 )
lower/upper
left quadrant ‘

FiIament SN EREE T A8 Wall section

7 Eulerian
rotating halo
Lagrangian quadrant ,
third progenltor

Eulerian caustic,

lower right quadrant / /

(not to scale)

1/
T2

TTT can be reconciled with quadrant dependent vorticity spin alignment if it is extended
to account for the tides of the filament.
Then spin-filament alignment can be interpreted both ways.
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3DTTT@ saddle? filament

- AM

e i ?/ vectors

* point reflection symmetric s \ /
A4d - . |

* vanish if no asymmetry
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3D Transition

Lagrangian theory
capture spin flip !

Transition mass
associated

with size

of quadrant
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3D Transition mass ?

Lagrangian theory '
capture spin flip ! W

Transition mass
associated

with size Low mass"patch o ~ ;; .

/A

of quadrant L x e,
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3D Transition mass !

High mass patc
L x 6¢

Lagrangian theory
capture spin flip !

Transition mass
associated

with size Low mass: patch \
of quadrant L xe, ¥

Ay
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Geometry of AM
(@ saddle




Explain transition mass? """

Transition mass versus redshift

1x10" . :
N\ J8dal
5% 10" i
5
Filament
t e Rp=7.2Mpc/h
Filament'~ _
_ R0=5Mpc/h\\ rr—.l\‘
G 2
= 1x102f
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5x10"t o
Codis et al 12’ o n
\ * ey wly
r=7 (721.686 \\ ‘ Do \
1x10!L . . NN AN 1\\\\\
1 1.5 2. 3
1+z

Only 2 ingredients: a) spin 1s spin one b) filaments flattened
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Does it work with 2D
|Qg Gaussmn point reflection symmetry

for realistic sets of saddles

Random FindS’ from log GRF
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Figure 11. Alignment of ‘spin’ along e; in 2D as a function of
quadrant rank, clockwise. As expected, from one quadrant to the
next, the spin is flipping sign.
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...and with DM simulation @z=0?

:I !lllllllillli]lIIIIIIII]|IIIIIIIII|IIIIIIII .
-~ Along e phi
Horizon 4Pi: 1.20— 1422
115 -
- 44
. /7] 1334
wp LIO[T ai o
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105_ ” 80
W= — 7 4 —
= \\\\ 7 1245
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~ 1.00 [ < -
095 o 17.56
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0.2 04 0.6 0.8
AS PrediCted, COS([J.)

the physical flip occurs along ephi !

Figure 12. Alignment of ‘spin’ along ey in horizon-4m simula-
tion. Low mass galaxies are increasingly perpendicular up to the
transition mass, while high mass galaxies parallel to eg.
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Back to galaxies

Filaments
metric for spin build up
of galaxies

AM built up via cold flows
occurs near extrema of
helicity (v.L) either side of
saddles!

Figure 8
near sadd
away fron

in fact helicity gradient is key

Thursday, June 26, 14 91



Back to galaxies... iy

%
Filaments 1 £] - /

= 0 +
metric for spin build up 1/
of galaxies 5
M -'2
AM built up via cold flows :
occurs near extrema of ;]

helicity (v.L) either side of
saddles!

Eijk Oli Vi wl%r N e
<

-1 _ 2—

2

Figure 8. Helicity (colour coded by sign) around density contour
near saddle point. Note that Helicity is largest at some distance

in fact helicity gradient is key Ay from biie micipiane.
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Take home message...

® Morphology (= AM stratification) driven by LSS via cold flows in
cosmic web: it explains Es & Sps where, how & why from 1Cs

® Signature in correlation between morphology and internal
kinematical structure of cosmic web.

® Process driven by simple dynamics: tayn ~ 1/4/p, shock

- requires updating TTT to saddles: simple theory
- Forget about voids: saddles is hype! ":-)

° Cosmlc web s |mportant because it produces beautiful galaxies
See Also CODIS +WELKER's talk for implications after coffee

For s: Pichon et al. 2011 Codis et al 2012 Ti
Lai Dub0|s et al 2014 Wel ‘

n ei* al 2012,




