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 The Lyman-α Forest 

Q1422+231; z = 3.6 

Songaila & Cowie (1996) 

Lyα



 The Gunn-Peterson Effect 

τν=ν0/(1+z) = (gu / gl)(1/ 8π)λ0
3 Γul  <nl>/ H(z) 

              ≈ 2.2 x 104 fHI(z)(flu λ0 / 506A)(1+z)3/2 

                                                   (for gu/gl = 3) 
        Observed QSO fν  =   fν

int  exp(-τν) 

        (Gunn & Peterson 1965; Scheuer 1965; 
            Field 1959 in 21cm EoR context)



 The Lyman-α Forest 

Q1422+231; z = 3.6 

Songaila & Cowie (1996) 

Lyα forest 



 The Lyman-α Forest 

•  Resonance line optical depth 

For HI Ly-α,  



Properties of the 
Lyman-α Forest 

•  HI column density distribution 

Janknecht et al. 
              (2006) 



Properties of the 
Lyman-α Forest 

•  HI Doppler parameter distribution 

Q0000-26 

Lu et al. (1996) 

Lognormal 
distribution 
provides 
good fit 



Properties of the 
Lyman-α Forest 

•  Line number evolution depends 
on HI column density 

Janknecht et al. (2006) 



 The Lyman-α Forest 

Equivalent width:  



 The Lyman-α Forest 

Line-blanketing 

                   (Spitzer 1948; Press et al. 1993) 



Properties of the 
Lyman-α Forest 

•  Mean transmission exp(-τ) evolution 



 The Lyman-α Forest 

For optically thin absorption systems,
τν=ν0/(1+z)  =  (gu / gl)(1/ 8π)λ0

3 Αul  <nl>/ H(z) 
   where now < nl >  = Qabs(z)nabs(z) 
   where Qabs(z) is the porosity (spatial filling 
   factor) of absorbers of mean internal neutral 

hydrogen density nabs(z) ~ Ωb
2/ ΓHI . 

For optically thick absorption systems, 
                 τν ≈ 3Qabs (z) [b/ H(z)L] 



 The Lyα forest: 
principal reservoir of all the 

baryons? 

Most of baryons in the Lya forest for characteristic 
absorber size l  ~ λJeans ~ 100 kpc   (AM & Madau 1993) 

…but not if the systems are sheets with l thick  << λJeans  
(Rauch & Haehnelt 1995) 



 The Lyman-α Forest 

•  Pressure-confined intergalactic gas clouds (Sargent et 
al. 1980; Ostriker & Ikeuchi 1983) 

•  Gravitationally-confined dark matter minihalos (Ikeuchi 
1986; Rees 1986; but see Bond, Szalay & Silk 1988) 

•  Caustics and sheets (McGill 1990; Miralda-Escudé  & 
Rees 1993; AM 1994) 

•  Extended gaseous disks (Salpeter 1993; Charlton et 
al. 1993, 1994) 

The $64,000 question: What are they? 



Ockham’s 
razor 

“Plurality should not 
be posited without 
necessity.”  

William of Ockham 
  (1285–1347/49) 



The game changer: detection of 
Cosmic Microwave Background 

fluctuations   

Cosmic Background Explorer (COBE) 

Smoot et al. (1992) 



The game changer: detection of 
Cosmic Microwave Background 

fluctuations   

Wilkinson Microwave Anisotropy Probe (WMAP) 
Bennet et al. (2003) 



Planck Planck Team (2013) 

The game changer: detection of 
Cosmic Microwave Background 

fluctuations   



•  Combined gravity – hydrodynamics code 
    (treecode/ SPH; PM/ grid hydro) 

•  Photoionization heating and atomic cooling 
    (eg Haardt & Madau 1996) 

•  “Instantaneous’’ optically thin reionization 

•  Cosmological world model 
•  Initial conditions 
    (CMB normalized Cold Dark Matter P(k): Peebles 1982, 

1984; Bond & Szalay 1983) 

Non-linear initial conditions 
problem: solve by 

cosmological simulations 

Cen et al. (1994); Zhang et al. (1995, 1997); Hernquist et al. (1996); 
Miralda-Escudé et al. (1996); Wadsley & Bond (1997) 



 The Lyman-α Forest 

Q1422+231; z = 3.6 

Songaila & Cowie (1996) 

Primordial density fluctuations 



Ockham’s 
razor 

“Plurality should not 
be posited without 
necessity.”  

‘‘The universe is a 
plenum formarum 
in which the range 
of conceivable 
diversity of kinds 
of … things is 
exhaustively 
exemplified.’’ 

William of Ockham 
  (1285–1347/49) 

The principle 
of plenitude vs 

Arthur Lovejoy in 
The Great Chain of Being (1936) 



1016 cm-2 < NHI : spheroidal 
(minihaloes) (3D) 

1014.5 cm-2 < NHI < 1016 cm-2 : 
filamentary 

    (cosmic web) (1D) 

1013.5 cm-2 < NHI < 1014.5 cm-2 : 
sheet-like 

   (Zeldovich pancakes)(2D) 

NHI < 1013.5 cm-2 : voids 

Column density correlates 
with morphology 

from Zhang, AM, Anninos, Norman (1998) 

New paradigm 



The Lyα forest contains 
most of the baryons 

Zhang, AM, Anninos & 
Norman (1998) 
(cf AM & Madau 1993) 

At high z: 

At low z: >40% in IGM: 
   >30% in diffuse Lya forest 
   >10% in Warm-Hot Intergalactic Medium (WHIM) 

   Danforth et al. (2014); Werk et al. (2014) 

~90% in Lyα forest 



Cosmic web: 
3D geometry of 

gaussian statistics 
Bardeen, Bond, Kaiser  & Szalay (1986) 

N-body simulation 
               (A. Klypin) 

Corresponding Zeldovich map of 
(Lagrangian) initial conditions 
        (Bond, Kofman & Pogosyan 1996) 



Cosmic web: 
3D geometry of 

gaussian statistics 
Bardeen, Bond, Kaiser  & Szalay (1986) 

N-body simulation 
               (A. Klypin) 

Corresponding Zeldovich map of 
(Lagrangian) initial conditions 
        (Bond, Kofman & Pogosyan 1996) 

‘Precise’ statistical predictions 
of quasi-nonlinear structures 



 The Lyman-α Forest 

•  Resonance line optical depth 

Photoionization rate per HI atom: 



 The Lyman-α Forest 

Synthetic spectrum: 

gas overdensity 

peculiar velocity 

spectrum 

(Cen et al. 1994) 

ΛCDM: 3 h-1 Mpc; 2883 



 The Lyman-α Forest 

Synthetic spectrum: 

gas overdensity 

peculiar velocity: 
velocity caustics 

optical depth 

spectrum 

(Lukić et al. 2014, in prep.) 
ΛCDM: 40 h-1 Mpc; 20483 



 The Lyman-α Forest 

Evolution mainly an 
effect of the 
expansion of the 
Universe 

(Zhang, AM, Anninos & Norman 1998) 



 The Lyman-α Forest 

The gas properties 
trace the dark matter 

(Lukić et al. 2014, in prep.) 

20483, 20 h-1 Mpc 
        z = 2.5 



What does the Lyα forest tell us? 
•  Constraints on cosmological parameters 



Statistics of the Lyα forest: 
pixel flux distribution function 

Rauch et al. (1997) 



Statistics of the Lyα forest 

Best fit: ΛCDML 
dKS=0.022, PKS=0.1-0.3 

(Data from Burles & Tytler 1997) 
AM, Bryan & Machacek (2001) 

Mostly constraining σJeans 



Lyα forest flux power spectrum 

McDonald et al. (2006) 
     using SDSS data 



Combined constraints: 
CMB + Lyα forest 

    (Viel, Haehnelt, Lewis 2006) 

σ8 = 0.86±0.03, ns = 0.96±0.02 
WMAP3 + low-res Lyα forest data 

σ8 = 0.78±0.05, ns = 0.96±0.02 
WMAP3 + hi-res Lyα forest data 

σ8 = 0.80±0.04 
low-res Lyα forest data + hydro 
simulations           (Viel & Haehnelt 2006) 

WMAP-9: σ8 = 0.82±0.03, ns = 0.96±0.01     (Hinshaw et al. 2013) 

Planck: σ8 = 0.834±0.027, ns = 0.962±0.009  (Planck Team 2013) 



Combined analyses: 
CMB, ξ(r), SNe, Lyα

Running coupling constant analysis 

Seljak, Slosar, McDonald (2006) 

ns (k) = ns(k0) + α log(k/ k0)/ 2, k0 = 0.05/Mpc 

   marginalised 

ns = 0.965±0.012 

α = -0.015±0.012 



Lyα forest flux power spectrum: 
include transverse-to-los data 

100 × (αiso − 1) = −1.6+2.0 +4.3 +7.4    (stat.) ±1.0 (syst.) 

Slosar et al. (2013) 
(also Busca et al. 2013) 

-2.0 - 4.1 - 6.8  @ z = 2.4 

Baryon Oscillation Spectroscopic Survey/ SDSS-III  



What does the Lyα forest tell us? 
•  Constraints on cosmological parameters 
•  Nature of sources of photoionization 



What are the sources of ionization? 

           Galactic stars vs accreting black holes (QSOs) 

Mass density of black holes: 3 x 105 M 
Mpc-3 

Mass density of stars: 3 x 108 M Mpc-3 

Mass-to-energy conversion efficiencies of 
   εaccr =  0.1-0.3 for black holes (Yu & Tremaine 2002) 
   εnucl =  0.007   for stars (hydrogen fusion), fesc = 0.05 

      → comparable ionizing photon rates 



What are the sources of ionization? 

           Galactic stars vs accreting black holes (QSOs) 

Mass density of black holes: 3 x 105 M 
Mpc-3 

Mass density of stars: 3 x 108 M Mpc-3 

Mass-to-energy conversion efficiencies of 
   εaccr =  0.1-0.3 for black holes (Yu & Tremaine 2002) 
   εnucl =  0.007   for stars (hydrogen fusion), fesc = 0.05 

      → comparable ionizing photon rates 

                        Cf Principle of plenitude 



Metagalactic HI ionization rate ΓHI  

Haardt & Madau (2012) 

QSOs 
galaxies 



Statistics of the Lyα forest 

Predicted line widths too narrow. 
(AM, Bryan & Machacek 2001) 

Theuns et al. (1998); Bryan, Machacek, Anninos & 
Norman (1999); AM, Bryan & Machacek (2001) 



Statistics of the Lyα forest 

AM, Bryan & Machacek (2001) 



Fechner et al. (2006) 

 HeII Lyman-α Optical Depth 



Temperature predictions 

Tittley & AM (2007)    
Temperature evolution Temperature vs density 

PL MQ 

SB HY 

PL MQ 

SB HY 



What does the Lyα forest tell us? 
•  Constraints on cosmological parameters 
•  Nature of sources of photoionization 
•  Nature of sources of reionization (EoR) 



AM (2005) 

 Epoch of Reionization 

Inferred ΓHI         only a few photons/ H atom over  Hubble time  
Miralda-Escudé (2003), AM (2005), Bolton & Haehnelt (2007) 



What does the Lyα forest tell us? 
•  Constraints on cosmological parameters 
•  Nature of sources of photoionization 
•  Nature of sources of reionization (EoR) 
•  Impact of forming galaxies: winds and metals 



Galactic winds 

Genzel et al. (2011) 

Hα/ [ΝΙΙ]

blue wing 

380 < vwind < 1000 km s-1 WHIM 
Shen et al. (2013) 



Conclusions 
•  Prediction of Lyα forest properties is a spectacular success 

of the Cold Dark Matter theory of cosmological structure 
formation, second only to predictions for CMB fluctuations. 
(It’s hard to beat linear theory.) Fully consistent with 
standard ΛCDM. 
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Conclusions 
•  Prediction of Lyα forest properties is a spectacular success 

of the Cold Dark Matter theory of cosmological structure 
formation, second only to predictions for CMB fluctuations. 
(It’s hard to beat linear theory.) Fully consistent with 
standard ΛCDM. 

•  Absorption structure arises from a variety of morphologies: 
manifestations of the cosmic web. 

•  Precise predictions in quasi-linear density regime  
                  a bridge to galaxy formation. 
•  Proving ground for feedback models of galaxies and QSOs: 
    photoionization, reionization, winds and metals. 





Effect of heat input 

ΔT = 9,000K added to Doppler widths of 
ΛCDML model results → late HeII reionization? 

AM, Bryan & 
Machacek (2001) 


