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❖ Formation of the Large-Scale Structure!
✦ identification of: !

• voids!
• walls (pancakes)!
• filaments!
• halos!

✦ relevant to: !
• Ly-alpha forest !
• galaxy formation in voids  

❖ Dark matter distribution on small scales!
✦ fine-grained distribution function of DM!
✦ identification/counting of:!

• caustics !
• streams (e.g., tidal streams)!

✦ relevant to:!
• direct and indirect detection experiments (e.g., “boost factor” for DM annihilation)!
• cosmic archeology (e.g., dwarfs & streams in the Local Group)

Motivation
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Collapse of an overdensity (1D example)
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Phase space:

❖ contains all information about 
system’s dynamics,  
 
but!

❖ all projections onto 3D are 
multivalued and contain caustics!

❖ the space is non-metric!
❖ numerically, v, being a 

derivative, is more noisy than x
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Phase space vs. Lagrange submanifold
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❖ x = x(q)  
x — Eulerian coord  
q — Lagrangian coord 

❖ Dynamically equivalent to phase 
space

Equivalently, one can use the 
Lagrangian submanifold:
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Lagrange submanifold
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❖ single-valued mapping (epimorphism)!
❖ metric space!
❖ numerically, it is less noisy than 

phase space (q is known exactly)!
❖ count “flip-flops” (or “flow U-turns”)!
❖ much easier to analyze & to find 

structures: voids, walls, filaments, 
halos, substructure, streams

Advantages of  
Lagrangian submanifold (LS):
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Disentangling the structure with LS
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Collapse of a gaussian field (1D & 2D)
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Figure 2. The halo in 1D N-body simulation of the nps = 2 model at the stage when all subhalos are inside of a single multi-stream

region. The notations are similar to fig.

2.1.2 Density field

Although the density field is also well known but its estimate from the spatial distribution of

particls is not unique. Here we used the technique based on the tessellation of the phase-space

sheet described in

3 3D

Bellow mean ± standard deviation of Lagrangian and Eulerian coordinates and velocities in

three structures identified in the flip-flop field at two thresholds.

Lagrangian coordinates

n↵ Np

35 731 1.37 ± 0.18 1.60 ± 0.18 2.55 ± 0.18

35 190 2.01 ± 0.11 1.52 ± 0.12 2.10 ± 0.14

25 3641 1.55 ± 0.36 1.57 ± 0.25 2.38 ± 0.29

Eulerian coordinates

n↵ Np

35 731 2.13 ± 0.0149 1.70 ± 0.0083 2.23 ± 0.0094

35 190 2.13 ± 0.026 1.70 ± 0.013 2.23 ± 0.015

25 3641 2.13 ± 0.024 1.70 ± 0.013 2.23 ± 0.015

Velocities

n↵ Np

35 731 -1.54 ± 46.1 -1.49 ± 27.4 -6.41 ± 31.6

35 190 32.3 ± 56.9 10.0 ± 29.9 -18.6 ± 30.5

25 3641 4.00 ± 67.1 1.93 ± 36.8 -10.06 ± 44.7

c� 2002 RAS, MNRAS 000, 1–6
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Figure 2. The halo in 1D N-body simulation of the nps = 2 model at the stage when all subhalos are inside of a single multi-stream

region. The notations are similar to fig.

2.1.2 Density field

Although the density field is also well known but its estimate from the spatial distribution of

particls is not unique. Here we used the technique based on the tessellation of the phase-space

sheet described in

3 3D

Bellow mean ± standard deviation of Lagrangian and Eulerian coordinates and velocities in

three structures identified in the flip-flop field at two thresholds.
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35 731 1.37 ± 0.18 1.60 ± 0.18 2.55 ± 0.18
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Lagrange + flip-flop field1D collapse
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Figure 3. Discrete field of number of turns inside out in a small 5123 simulation. The numbers near the color bar show the number
of turns.

3.0.3 The multi-stream field

3.0.4 The velocity field in Lagrangian space

3.0.5 The Lagrangian submanifold

3.0.6 The number of flip-flops

4 RESULTS
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2D collapse
Lagrange + flip-flop field

Unlike other stream-counting 
algorithms, the use of 
Lagrange submanifold 
allows one to disentangle 
substructure individually — 
no projection effects!



Structure formation in ΛCDM
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Zoomed-in Gadget simulations:! 1 Mpc/h,  2563! !

! ! ! ! ! ! ! ! flip-flops computed for each particle at each time-step

Euler (x) space Lagrange (q) space



Structure formation in ΛCDM (q-space)
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Figure 9. Flip-flop field in the simulation of 1/h Mpc box in the ⇤CDM cosmology at z = 0. Three two-dimensional plots show
the contours in three mutually orthogonal planes through the center of the cube. The bottom right panel shows the the contours

on the three faces of the cube. Contours from gray to magenta are: n↵ = 1.5, 2.5, 4, 7, 12, 27, 45, 75, 120, and 175. Note, although

the flip-flop is a discrete integer field the contours can be plotted for an arbitrary value of the field.

c� 2002 RAS, MNRAS 000, 1–6

The 1 Mpc/h simulation cube in 
Lagrangian space color-coded 
by #of flip-flops

Topology of the structure: !
constant nff contours never cross 
each other — substructure is 
imbedded in a larger structure — 
as in matryoshka doll



Identifying the structure

10

12 SergeiShandarin

Figure 10. Multistream field in the simulation of 1/h Mpc box in the ⇤CDM cosmology at z = 0. Contours are: ns = 50,000

– red, 15,000 – brown, 5000 — yellow, 250 – green, and 3 – blue. Contours are plotted within a sphere of the radius Rs ⇡300/h
kpc approximately seen in the bottom right panel. The sequence of the plots clearly shows that the halos (red) are embedded

into filaments (top right and bottom left panels) which in turn are imbedded in a complicated set of pancakes/walls (bottom right

panel).

c� 2002 RAS, MNRAS 000, 1–6

Halos

Filaments Walls!
(pancakes)

nstreams = 3nstreams = 250

nstreams = 50,000 & !
! ! 15,000

nstreams = 15,000 & !
! !  5,000

Euler space plot; R=300 kpc
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Figure 11. The distributions of subhalos in a small simulation in 4Mpc/h cube with 643 particles. The left panels show the particles
in Lagrangian space with 25 < n↵ < 35 – blue and particles with n↵ > 35 green and magenta forming two distinct regions. The

panels on the right show two subhalos with n↵ > 35 in Eulerian space in the bottom and the halo formed by all the particles in

the top panel.

c� 2002 RAS, MNRAS 000, 1–6

Disentangling the substructure
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Lagrange space Euler space

nff =15

nff = 25

projection: q ⟼ x !
! nstreams = 1 + 2 𝚺 nff,substructure



Disentangling by velocities?
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Figure 12. The distribution of the particles shown in fig. 11 is plotted in the velocity space. The figure illustrates the di�culty of

isolating di↵erent subhalos in both either the velocity or configuration space taken separately.

c� 2002 RAS, MNRAS 000, 1–6

Velocity space (2 projections)

nff =15

nff = 25



Merging halos in q-, x- & v-spaces
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Figure 13. A halo in 2563 simulation of 1 Mpc/h box in ⇤CDM model. Top left panel shows contours of N↵ field in Lagrangian

space. Top right panel shows the particles in Lagrangian space that form the central part of the halo in Eulerian space shown in
four bottom panels. There panels on the left show three orthogonal projections of the three-dimensional dot plot. The panel on the

right shows velocities of a small subset of the particles shown on the left.

c� 2002 RAS, MNRAS 000, 1–6
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x-space v-space



❖ x = x(q) — Lagrangian submanifold!
✦ dynamically equivalent to phase space!
✦ superior than phase space:!

• single-valued mapping — epimorphism: q ⟼ x!
• metric space!
• algebraic identification of structures: voids, walls, filaments, halos, streams!
• no 3D projection effects: disentangle substructure individually!
• much more accurate!

❖ Simulations + x(q) + “flip-flop field”:!
✦ hierarchical structure of Cosmic Web — a la matryoshka doll!
✦ substructure survives for a long time!

❖ “Topological cosmology” or “Diophantine cosmology” — integer numbers involved

Conclusions
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