IAU-308 Zel'dovich Universe – Tallinn – 24 June 2014

Disentangling Cosmic Web using Lagrangian Submanifold

S. Shandarin (Kansas) <u>M. Medvedev (Kansas)</u> J. Hidding (Groningen)

Motivation

- * Formation of the Large-Scale Structure
 - identification of:
 - voids
 - walls (pancakes)
 - *filaments*
 - halos
 - relevant to:
 - Ly-alpha forest
 - galaxy formation in voids
- * Dark matter distribution on small scales
 - fine-grained distribution function of DM
 - identification / counting of:
 - caustics
 - streams (e.g., tidal streams)
 - relevant to:
 - *direct and indirect detection experiments (e.g., "boost factor" for DM annihilation)*
 - cosmic archeology (e.g., dwarfs & streams in the Local Group)

Collapse of an overdensity (1D example)

Phase space:

 contains all information about system's dynamics,

but

- all projections onto 3D are *multivalued* and contain caustics
- * the space is *non-metric*
- numerically, v, being a derivative, is more noisy than x

Phase space vs. Lagrange submanifold

Equivalently, one can use the **Lagrangian submanifold**:

- x = x(q)
 x Eulerian coord
 q Lagrangian coord
- Dynamically equivalent to phase space

Lagrange submanifold

Advantages of **Lagrangian submanifold (LS)**:

- * single-valued mapping (epimorphism)
- * *metric* space
- numerically, it is less noisy than phase space (q is known exactly)
- * count "flip-flops" (or "flow U-turns")
- much easier to analyze & to find structures: voids, walls, filaments, halos, substructure, streams

Disentangling the structure with LS

Collapse of a gaussian field (1D & 2D)

Unlike other stream-counting algorithms, the use of Lagrange submanifold allows one to disentangle substructure individually no projection effects!

Structure formation in **ACDM**

Zoomed-in Gadget simulations: 1 Mpc/h, 256^3

1 Mpc/*h*, 256³ flip-flops computed for each particle at each time-step

Structure formation in ACDM (q-space)

The 1 Mpc/h simulation cube in Lagrangian space color-coded by #of flip-flops

Topology of the structure: constant $n_{\rm ff}$ contours never cross each other — substructure is imbedded in a larger structure as in *matryoshka doll*

Identifying the structure

Euler space plot; R=300 *kpc*

Disentangling the substructure

Disentangling by velocities?

Merging halos in q-, x-& v-spaces

Conclusions

- * x = x(q) Lagrangian submanifold
 - dynamically equivalent to phase space
 - superior than phase space:
 - *single-valued mapping* epimorphism: $\mathbf{q} \mapsto \mathbf{x}$
 - *metric space*
 - *algebraic identification of structures:* voids, walls, filaments, halos, streams
 - *no 3D projection effects:* disentangle substructure individually
 - *much more accurate*
- Simulations + x(q) + "flip-flop field":
 - hierarchical structure of Cosmic Web *a la* matryoshka doll
 - substructure survives for a long time
- * "Topological cosmology" or "Diophantine cosmology" integer numbers involved