Disentangling Cosmic Web using Lagrangian Submanifold

S. Shandarin (Kansas) M. Medvedev (Kansas) J. Hidding (Groningen)

Motivation

- Formation of the Large-Scale Structure

- identification of:
- voids
- walls (pancakes)
- filaments
- halos
- relevant to:
- Ly-alpha forest
- galaxy formation in voids
* Dark matter distribution on small scales
+ fine-grained distribution function of DM
+ identification/ counting of:
- caustics
- streams (e.g., tidal streams)
- relevant to:
- direct and indirect detection experiments (e.g., "boost factor" for DM annihilation)
- cosmic archeology (e.g., dwarfs \& streams in the Local Group)

Collapse of an overdensity (1D example)

Phase space:

* contains all information about system's dynamics,
but
* all projections onto 3D are multivalued and contain caustics
* the space is non-metric
* numerically, v, being a derivative, is more noisy than \mathbf{x}

Phase space vs. Lagrange submanifold

Equivalently, one can use the Lagrangian submanifold:

* $\mathbf{x}=\mathbf{x}(\mathbf{q})$
\mathbf{x} - Eulerian coord
q - Lagrangian coord
* Dynamically equivalent to phase space

Lagrange submanifold

Advantages of
Lagrangian submanifold (LS):

* single-valued mapping (epimorphism)
* metric space
* numerically, it is less noisy than phase space (\mathbf{q} is known exactly)
* count "flip-flops" (or "flow U-turns")
* much easier to analyze \& to find structures: voids, walls, filaments, halos, substructure, streams

Disentangling the structure with LS

Collapse of a gaussian field (1D \& 2D)

1D collapse

2D collapse

Lagrange + flip-flop field
Unlike other stream-counting algorithms, the use of Lagrange submanifold allows one to disentangle substructure individually no projection effects!

Structure formation in \wedge CDM

Zoomed-in Gadget simulations:
$1 \mathrm{Mpc} / \mathrm{h}, 256^{3}$
flip-flops computed for each particle at each time-step

Structure formation in ^CDM (q-space)

The $1 \mathrm{Mpc} / \mathrm{h}$ simulation cube in Lagrangian space color-coded by \#of flip-flops

Topology of the structure: constant \mathbf{n}_{ff} contours never cross each other - substructure is imbedded in a larger structure as in matryoshka doll

Identifying the structure

Euler space plot; $R=300 \mathrm{kpc}$

Disentangling the substructure

Lagrange space

$\mathbf{n}_{\mathrm{ff}}=\mathbf{2 5}$

Disentangling by velocities?

Velocity space (2 projections)

$$
\mathbf{n}_{\mathrm{ff}}=15
$$

$$
\mathbf{n}_{\mathrm{ff}}=25
$$

Merging halos in $\mathbf{q}^{-}, \mathbf{x}-\& \mathbf{v}$-spaces

Conclusions

* $x=x(q)$ - Lagrangian submanifold
+ dynamically equivalent to phase space
+ superior than phase space:
- single-valued mapping — epimorphism: $\mathbf{q} \mapsto \mathbf{x}$
- metric space
- algebraic identification of structures: voids, walls, filaments, halos, streams
- no 3D projection effects: disentangle substructure individually
- much more accurate
* Simulations + $\mathbf{x}(\mathbf{q})+$ "flip-flop field":
- hierarchical structure of Cosmic Web - a la matryoshka doll
+ substructure survives for a long time
* "Topological cosmology" or "Diophantine cosmology" - integer numbers involved

