Hierarchical Formation of Dark Matter Halos and the Free Streaming Scale Tomoaki Ishiyama University of Tsukuba (Kobe satellite) Partially based on Ishiyama, 2014, ApJ, 788, 27 (arXiv:1404.1650)

Outline

Motivation

- Free streaming damping
- Fine structures of the Milky Way dark matter halo

Numerical Simulations

Highlight results

- Structures of halos near the free streaming scale
- Concentration at z=0
- Evolution of density profiles
- Annihilation boost factor by subhalos

Free streaming damping

- Free streaming motions of dark matter particles wipe out the density \bullet fluctuation and impose a cutoff on P(k)
 - CDM: $\sim 10^{-6}$ Msun (microhalo), if dark matter is the neutralino of • 100GeV-1TeV (e.g. Zybin+1999, Hofmann+2001, Berezinsky+ 2003, , Green+2004)

The structures of the Milky Way system

Dwarf Galaxy

- Numerous subhalos (10⁻⁶ ~ 10¹⁰ solar mass)
 - $dn/dm \propto m^{-2 \sim -1.8}$
- Where can we observe gamma-ray flux due to dark matter annihilation?
 - The center of the Milky Way halo?
 - Dwarf Galaxy ?
 - Microhalos near Sun ?

Flux $\propto \rho^2 \rightarrow$ Density structures of the halo & subhalos and spatial distribution of subhalos are very important

Solar system

very small subhalo

Milky Way

Sun

Resolution is very important !

- To resolve central regions are very important ! -> large number of particles
- High resolution reduces the effect of artificial fragmentation as seen in WDM (e.g. Wang and White 2007, Schneider+ 2013, Angulo+ 2013)

Our studies

- Clarify the structure of halos near the free streaming scale by large cosmological N-body simulations
 - Typically, NFW or Einasto is assumed, thougth, it is likely different from them
 - Previous works focused on only the smallest microhalos and simulated only a few microhalos (Diemand+ 2005, Ishiyama+2010, Anderhalden & Diemand 2013)
- 4096³ particles were used for the largest simulation
 - Impose the cutoff in the matter power spectrum
 - Focus on CDM, but should be applied for WDM etc
- Quantify shapes, concentrations and their distribution
- Evaluate the contribution to the annihilation gamma-ray

Ishiyama, 2014, ApJ, 788, 27 Cosmological N-body simulations

Name	N	L(pc)	$arepsilon(\mathrm{pc})$	$m(M_{\odot})$	$m_{\rm DM}~({\rm GeV})$
A_N4096L400	4096^{3}	400.0	2.0×10^{-4}	3.4×10^{-11}	100
A_N4096L200	4096^{3}	200.0	1.0×10^{-4}	4.3×10^{-12}	100
B_N2048L200	2048^{3}	200.0	$2.0 imes 10^{-4}$	3.4×10^{-11}	w/o cutoff

- z=400 to z=32
- GreeM parallel TreePM code (Ishiyama+ 2009, 2012)
 - ~10 times faster than Gadget-2

Movie: **Takaaki Takeda** (4D2U, National Astronomical Observatory of Japan)

N = 4096³ = 68,719,476,736

L = 400 pc M = 3.4×10^{-11} Msun

Analyze 10⁻⁶ ~ 10⁻⁴ Msun halos

#halos > 5000
Good statistics !!!

Sharp cosmic web is observed, compared to large scale structures

z=32

N = 8192³ = 549,755,813,888

L = 1.12 Gpc/hm = 2.2 x 10⁸ Msun/h

Planck Cosmology

11x larger volume,4x better mass res,compared toMillennium simulation

z = 0

Ishiyama, 2014, ApJ, 788, 27

Stacked density profiles (z=32)

• Larger halo -> shallower cusp $\alpha = -0.123 \log(M_{\rm vir}/10^{-6} M_{\odot}) + 1.461$

- Reach NFW like profile at 10⁻³~10⁻² Msun !
- Concentration shows little dependence on the halo mass (c=1.2~1.7)
 - Because the formation epoch shows little dependence on the mass

Converted NFW concentration at z=0

- The median is 60~70
- Consistent with the fitting proposed by Sanchez-Conde and Prada (2014, black curve)
- Exclude single power law fitting function
- Exclude very large concentrations (~1000) for microhalos

- How to convert:
 - fixed Rvmax (Ricotti 2003)
 - Rvir and Rs are scalable to z=0 by multiplying 1+z (Bullock+ 2001)

Evolution of density profiles

- Not depending on the collapse epoch, profiles of progenitors soon after the collapse are similar to those of the smallest halos.
- Cusps are shallowing as the halos grow.

Annihilation boost factor by subhalos

- Gamma-ray luminosity of a halo by neutralino self-annihilation seen from a distant observer
- NFW case (green)
- Based on this work
 (Red and blue)
- The steeper inner cusps of halos near the free streaming scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67%.
 - Strongly depending on the subhalo mass function

Boost factor

 $B(M) = \frac{1}{L(M)} \int_{M_{\min}}^{M} \frac{dn}{dm} [1 + B(m)] L(m) dm$ $\frac{dn}{dm} (m/M)^{-\zeta}$

Summary

Ishiyama, 2014, ApJ, 788, 27

- The central cusps of halos near the free streaming scale are much steeper than that of the NFW profile
 - Becomes gradually shallower as the halo mass increases.
 - NFW shows bad fitting, additional shape parameter is needed

$$\alpha = -0.123 \log(M_{\rm vir}/10^{-6} \, M_{\odot}) + 1.461$$

- Concentration shows little dependence on the halo mass
 - The median with the cutoff is $1.2 \sim 1.7$ at z=32
 - Corresponding to conventional concentrations (based on the NFW profile) of 60~70 at z=0
 - Exclude single power law mass-concentration relation
- Steeper cusps enhance the annihilation luminosity of MW between 12~67%
- Analyzing web structures are key to know the physical origin of cusps ???