The impact of superstructures in the Cosmic Microwave Background

Stéphane ILIĆ (IRAP, FR)

with M. Langer & M. Douspis (IAS, FR)

Tallinn IAU Symposium 308 28th June 2014

Stéphane Luć (IRAP)

Impact of superstructures in the CMB

The iSW effect in one equation (and two images)

$$\delta T_{\rm iSW} = \frac{2}{c^2} \int_{t_{\rm far}}^{t_{\rm now}} dt \frac{\partial \Phi}{\partial t}$$

Classical approach : CMB-galaxy χ -correlation

Author	CMB	LSS Tracer	Wavelength	Method	Claimed
Boucher & Critter Jan (2002)	CODE	VDD	V	Da	Detection
Giappantonio et al 12002	W3	AND	лгау	D2 D2	2.7 σ
Boughn & Crittenden (2004, 2005)	W1	XRB/NVSS	Xray/Radio	D2 D2	'tentative' (2-3 σ)
		apaa pp.		D.a.	0 = (1=====)
Fosalba et al. (2003)	W1	SDSS DR1		D2	3.6σ (high z)
Cabré et al. (2006)	W3	SDSS DR4	Ontical	D2	>2a
Giannantonio et al (2008)	W3	SDSS DR6	Optical	D2	2 20
Sawangwit et al (2010)	W5	SDSS DR5		D2	'marginal'
López-Corredoira et al. (2010)	W5	SDSS DR7		D2	'No detection'
Giannantonio et al. (2006)		CDCC Owners	Ontinal	-	2σ
Giannantonio et al. (2008) / T	r	1 /	, •	•	2 50
Xia et al. (2009)	\cap	dotor	rt i nr	า ′ 🗀	2.70
Scranton et al. (2003)	U	ucieu	10101	L	$> 2\sigma$
Padmanabhan et al. (2005					2.5σ
Granett et al. (2009)	W3	SDSS LRG	Optical	DI	2σ
Giannantonio et al. (2008)	W3			D2	2.2σ
Sawangwit et al (2010)	W5	SDSS LRG 2SLAO		D2	'marginal'
Sawangwit et al. (2010)	W5	AAOmega LRG		D2	Null
Fosalba & Gaztañaga (2004)	W1	APM	Ontical	D2	2.50
Afshordi et al (2004)	W1		optical	D1	25 0
Rassat et al. (2007)	W3	2MASS	NIR	D1	20
Giannantonio et al. (2008)	W3			D2	0.5σ
Francis & Peacock 2010b	W3			D1	'weak'
Boughn & Crittenden (2002)	CO			D2	No
Nolta et al. (2004)	W			D2	2.2σ
Pietrobon et al. (2006)	W:		Radio	D3	$> 4\sigma$
Vielva et al. (2006)	W.	+		D3	3.3σ
McEwen et al. (2007)	W	1.00		D3	$> 2.5\sigma$
Raccanelli et al. (2008)	W3			De	2.7σ
McEwen et al. (2008)	W3			D3	$\sim 4\sigma$
Giannantonio et al. (2008)	W3			D2	3.3σ
Hernández-Monteagudo (2009)	W3			D1	2σ
Sawangwit et al. (2010)	W5			D2	'marginal' ($\sim 2\sigma$)
Corasaniti et al. (2005)	W1			D2	2σ
Gaztanaga et al. (2006)	W1			D2	2σ
Ho et al. (2008)	W3	Combination	Combination	DI	
Giannantonio et al. (2008)	W3			D2	4.50

Dupé et al., A&A, 2011

Stéphane Iuć (IRAP)

Impact of superstructures in the CMB

IAU Symposium 308 3 / 13

Idea : CMB stacking at superstructures locations

Focus on voids :

- Aperture photometry (at $4^\circ)$: $\sim -10.8\,\mu\text{K}$
- Significance (w.r.t. null hypothesis) : $\sim 3.3 \sigma$

 ΛCDM in danger ?

- Significant signal...
- ...but amplitude claimed to be too high for ΛCDM : N-body simulations, analytical calculations,...
- Lower significance with other catalogues : llić et al. (2013), Cai et al. (2014), Hotchkiss et al. (2014),...

However :

- Predictions not always representative
- Limited sample
- Fortuitous signal ?
- Selection effects ?
- Wrong identification ?

Before any conclusion : need for full, exact computation of expected signal from such structures

Roadmap

Objectives?

- Model a single structure and its evolution
- Compute its iSW impact on CMB

Tools?

- Gravity & photons → General Relativity
- Spherical structure → Lemaître-Tolman-Bondi (LTB) metric

Working hypothesis : compensated structures

Reproducing Granett et al. voids

Inputs to LTB metric

- Two free functions : *M*(*r*) and *K*(*r*)
- Translatable into $\rho(r)$ and v(r) at given time

Granett et al. voids

- (Relatively) Limited information
- Redshift z
- Density contrasts : δ_{\min} , $\langle \delta \rangle_{\delta < 0}$
- Effective radiii

We can reproduce these properties with arbitrary precision

Evolution of a LTB void

Photons crossing a LTB void

Solving geodesic equations

Photons crossing a LTB void

Solving geodesic equations

Photons crossing a LTB void

Solving geodesic equations

Simulating the "iSW sky"

Map of iSW shift -10iSW shift (µK) -20 -30 -40-10 Angle (°) from void center 10 Γemperature (μK) -10 -13Predicted stacked temperature Predicted stacked photometry -14 Mesured stacked photometry -50 μK 50 ō 4 Angle (°) from void center

Assessing the CMB contamination

Assessing the CMB contamination

(Gaussian) CMB realisation

Assessing the CMB contamination

- 10,000 CMB realisations
- 10,000 simulated photometry
- Where does the data stand?
 - $\bullet \sim 1.7 \sigma$ from expected photometry at 4°
 - $\chi^2_{\rm red}$ of whole photometry ~ 1

Granett et al. voids

- Signal compatible with ΛCDM
- Mixture of iSW and primordial CMB
- Detection of iSW is tricky !

LTB framework

- Powerful and versatile tool for predictions
- Optimisation of detection (future surveys)
- Can help answer : is stacking a viable probe of iSW ?

Going futher :

- Benefits from increasing knowledge of voids
- Non-compensated voids
- Non-spherical voids
- Other cosmologies

More on profiles

Stéphane Iuć (IRAP)

Impact of superstructures in the CMB

- a density profile $\rho_i(r)$ is given at time t_i
- a velocity profile $(R_{,t})_i(r)$ is given at time t_i ,
- the bang time is simultaneous,
- the crunch time is simultaneous,
- the time of maximum expansion is simultaneous,
- the model becomes homogeneous at late times,
- only growing modes are present,
- only decaying modes are present,
- a velocity profile $(R_{,t})(r)$ is given at late times,
- a time-scaled density profile $t^3 \rho(M)$ is given at late times.

iSW approximation

$$\left(\frac{\delta T}{T}\right)_{\rm iSW} = 2 \int \mathrm{d}t \frac{\dot{\Phi}}{c^2}$$

•
$$\Phi \sim 4\pi G \bar{\rho}_m L^2 \delta$$

• $\dot{\Phi} \sim \Phi/\tau, \Lambda$ -dom $\Rightarrow \tau \sim H^{-1}$
• $\int dt \sim L/c$
 $(\frac{\delta T}{T})_{iSW} \sim 8\pi G L^3 c^{-3} H \bar{\rho}_m \delta$

•
$$\bar{\rho}_m = \Omega_m \rho_c = \Omega_m (3H_0^2/8\pi G)$$

- $H = H_0 \sqrt{\Omega_{\text{Tot}}}$
- $R_H = c/H_0$

$$\left(\frac{\delta T}{T}\right)_{\rm iSW} \sim 3 \left(\frac{L}{R_H}\right)^3 \Omega_m \sqrt{\Omega_{\rm Tot}} \delta \sim 10^{-6} h^3 \left(\frac{L}{10 {\rm Mpc}}\right)^3 \frac{\delta}{10} \Omega_m \sqrt{\Omega_{\rm Tot}}$$

Compensation test

Photons crossing a void

Linear perturbation theory :

- Describes time-evolution of $\delta = \rho / \langle \rho \rangle 1$ (for $\delta \ll 1$)
- $\delta(t) \propto D(t) \rightarrow \text{growth function}$
- Poisson : $\Delta \Phi = 4\pi \langle \rho \rangle Ga^2 \delta \Longrightarrow \Phi \propto D(t)/a(t)$

Consequences

- In flat matter-dominated Universe : $D(t) \propto a(t) \Rightarrow \Phi$ is **constant**
- In any other case : $d\Phi/dt \neq 0$
- In ΛCDM : Φ decays with time

$$ds^{2} = -dt^{2} + \frac{R_{rr}^{2}}{1 + 2E(r)}dr^{2} + R^{2}(r,t)d\Omega^{2}.$$
(1)

$$R_{rt}^{2} = 2E(r) + \frac{2GM(r)}{R} - \frac{1}{3}\Lambda R^{2}$$
(2)

$$4\pi\rho(r) = \frac{M_{rr}(r)}{R^{2}R_{rr}}.$$
(3)

Photon in LTB theory

$$\frac{dr}{dt} = \pm \frac{\sqrt{1+2E}}{R_{,r}}.$$
(4)
$$\frac{d\epsilon}{dt} = -\frac{R_{,rt}}{R_{,r}}\epsilon$$
(5)

$$\frac{dr}{dt} = \frac{k^r}{k^t} \tag{6}$$

$$\frac{d\theta}{dt} = \frac{k^{\theta}}{k^{t}} \tag{7}$$

$$\frac{dk^{t}}{dt} = -\frac{1}{k^{t}} \left(\frac{R_{rrt} R_{rr}}{1 + 2E} (k^{r})^{2} + R_{rt} R(k^{\theta})^{2} \right)$$
(8)

$$\frac{dk^{r}}{dt} = \frac{1}{k^{t}} \left[\left(\frac{E_{rr}}{1+2E} - \frac{R_{rrr}}{R_{rr}} \right) (k^{r})^{2} + \frac{(1+2E)R}{R_{rr}} (k^{\theta})^{2} \right] - \frac{2R_{rrt}}{R_{rr}} k^{r}$$
(9)
$$\frac{dk^{\theta}}{dt} = -\frac{2k^{\theta}}{R} \left(R_{rt} + \frac{R_{rr}k^{r}}{k^{t}} \right)$$
(10)

with $k^{\chi} = d\chi/d\lambda$ ($\chi = t, r, \theta$)