The Void Galaxy Survey: morphology and star formation properties of void galaxies

Burcu Beygu

with

K. Kreckel (MPIA), R. van de Weygaert (Kapteyn), T. van der Hulst (Kapteyn), J. van Gorkom (Columbia Unv.), T. Jarrett (UCT), M. Aragón-Calvo (UCR), R. Peletier (Kapteyn)

university of groningen

faculty of mathematics and natural sciences

kapteyn astronomical institute

The Void Galaxy Survey (VGS)

21 cm Westerbork Synthesis Radio Telescope

Near-UV

GALEX Telescope

H-α MDM 2.4m Hiltner Telescope 3.6 & 4.5 µm Spitzer

B & R –band INT 2.5m

- Color magnitude; B-band & Spitzer 3.6 µ
- Morphology: structural parameters; n, re, h
- Star formation properties: *H*_a & *near-UV*
- Are they a separate class of galaxies?
- How different are their observed properties compared to other galaxies?

VGS galaxies: their identities

VGS galaxies in the parameter space of r_e and M_B in B-band, adopted from Mo et al. (2010)

•

VGS galaxies: structural parameters and stelar mass

Ratio of r_e of different bands, Sérsic indices and stellar mass

 $re_B/re_{3.6}$ / M_* / re_B

This shows that light in the smaller galaxies is more concentrated in B

Also, SF is more concentrated in the smaller galaxies, or more in the outer parts of the larger objects.
Extinction could contribute as well.

n < 2 in both bands : late type galaxies

VGS galaxies: color

color - magnitude - re

- SAURON red sequence (Falcón-Barroso et al. 1011), elliptical, old stars
- faintest galaxies are the youngest
- massive VGS galaxies are reddened by dust

VGS galaxies: structural parameters

- $h_{VGS} < h_{Spirals}$, $M_B v_{GS} > M_B s_{pirals}$ but μ_0 is in similar range
 - $M_B v_{GS} > M_B d_E$, $\mu_0 v_{GS} < \mu_0 d_E$ but n and r_e in similar order

- VGS similar to late types in terms of disk presence and μ_0 but smaller and fainter.
- VGS similar to dE in terms of size but they are brighter.

How do they look like?

Spiral

Edge-on

Irregular

Compact

AGN

How do they look like?

VGS 31: an interacting galaxy system along a filament in a void

Beygu et al. (2013)

VGS 31: Filament inside void

A density enhancement in an underlying tenuous dark matter filament?

•

VGS 31: filament inside void

A density enhancement in an underlying tenuous dark matter filament?

Another filament?

Another filament?

- A major merger and two companions
- Common HI envelop?

VGS galaxies: Star formation properties

VGS galaxies: color- specific star formation - stellar mass relation

- VGS galaxies are star forming galaxies, not starburst (occasional)
- SFR < 1.5 M_{\odot} yr⁻¹ (except VGS 31 and couple more)
- Small galaxies suffer more from stochasticity, effecting H_a sample more as result of recent star formation.

VGS galaxies: Star formation properties

VGS galaxies in Kennicut-Schimidt relation

Low star formation, average HI density regime

SFEs (SFR/M_{HI}) and S-SFRs (SFR/M*) per M*

•

- compared to intermediate density environment galaxies; LV galaxies (Karachentsev et al. 2013), ALFALFA, JCMT
- There is no significant difference, similar trend, also not each mass bin equ.

- SFE (SFR/M_{HI}) S_SFR (SFR/ M*) per M_{HI}
- similar to previous comparison, there is no significant difference

Emission line properties and AGN population

- VGS galaxies in the BPT diagram
- Based on SDSS spectra
- Star forming, HII galaxies
 - **1 AGN out of 59 void galaxies**

Summary and Discussion

- VGS galaxies mostly consist of blue late-type disk galaxies.n < 2
- There are occasional red early types, AGN and irregular galaxies.
- There is a population of interacting/ maj. merging galaxies apart from the isolated (without companion) void galaxies
 - VGS galaxies are star forming galaxies.
- S_SFRs and SFEs per M* and M_{HI} are similar to those of field / intermediate density environment galaxies.
 - VGS may evolve to be large dEs
 - Voids in our sample don't seem to be populated by a particular type of void galaxy; environment has an effect on M^{*} and size ?

Emission line properties and AGN population

- complete void galaxy sample
- · 2 AGNs
- consistent with 60 VGS

VGS galaxies and the cosmic web

 VGS galaxies and the density distribution over the different components of the cosmic web (courtesy of Marius Cautun)

