A Giant in the Cosmic Web

A Galactic Superstructure of ~700 Mpc Scale

Joydeep Bagchi (IUCAA, Pune) Shishir Sankhyayan (IISER, Pune) Prakash Sarkar (TIFR, Mumbai) Varun Sahni (IUCAA, Pune)

Joe Jacob (Newman College, Kerala)

Undiscovered "Giants" in the cosmic web?

We show a very large ~200 Sq. Degree area from the SDSS-III Survey

All galaxies in this redshift cone have accurate spectroscopic redshifts

One can easily spot two very large -scale galactic superstructures of ≥ 500 Mpc scale !

Zoom on the cosmic-web containing the super-structure(s) Circle diameter is ~ 750 Mpc comoving !

No! This can not be a fingers-of-God effect

The Largest Supercluster !

Volume limited sample shown

Total ~ 4200 galaxies

About 1000 galaxies trace the large S-shaped filament

End-to-end "span" 650 – 700 Mpc!

Network of huge voids, filaments on the right

Chain of voids on left (A void pipe/ tunnel ?)

Identifying and Characterizing the new super-structure

We have used two independent methods for an objective analysis :

1. Smoothed density field method + the "ShapeFinder" mathematical analysis tool (Sahni, Satyaparakash & Shandarin 1998)

2. The Voronoi/Delaunay tessellation method (See the poster by Shishir Sankhyayan)

Redshift and magnitude cuts

Comparison with random catalogs

Generate random point sets having the same number density and the same angular coverage on the sky as the observed galaxy subsample

Obtain a number of random mock samples and in them find clustering of points in the same way as for the real sample

Compare using rigorous statistical tests like Kolmogorov – Smirnov test

Null hypothesis is rejected at high (> 95%) significance

Methodology: Smoothed Density Field

- Galaxy distribution mapped to a grid spacing 1 Mpc using Cloud-in-Cell (CIC) method
- Smoothed density field was constructed by smoothing with Gaussian kernal with smoothing length L ~ 5 Mpc

Smoothing scale 1/2 of the mean intergalactic separation $\lambda \sim 10$ Mpc

We have a fairly good sampling. Avoid crossing the percolation threshold

Smoothed Density Field Contours

Identifying the overdensities and voids

We define overdense regions as $\rho > \rho(mean)$

underdense (void) regions as $\rho \leq 0.2 \rho(mean)$

Friends-of-Friends (FOF) used to identify Interconnected "cluster" or "void" cells

Linking Length? Effectively LL = 5 Mpc, about half of mean galaxy separation $\lambda \sim 10$ Mpc. <u>Thus, much below the percolation threshold</u>

ShapeFinder diagnostic

Mecke et al. (1994)

In 2D the three Minkowski Functionals are:

- 1. Surface Area (S)
- 2. Perimeter (P)
- 3. Euler Characteristics (χ)

Filamentarity (\mathcal{F})

Sahni et al. (1998)

$$\mathcal{F} = \frac{P^2 - 4\pi S}{P^2 + 4\pi S}, \qquad 0 \le \mathcal{F} \le 1$$

Filled Circle (R): $S = \pi R^2$, $P = 2\pi R \Rightarrow \mathcal{F} = 0$ Line (L) $: S = 0, P = 2L \Rightarrow \mathcal{F} = 1$

For a highly filamentary Object $F \approx 1$

ShapeFinder diagnostic (result)

Minkowski Functionals and Filamentarity for the 5 largest high density clusters				
Structure no	Area	Perimeter	Euler Characteristics	Filamentarity
	$(\times 10^3 \mathrm{Mpc}^2)$	$(\times 10^2 \text{Mpc})$		
1	52.2	45.7	-8	0.94
2	14.9	16.7	-1	0.87
3	6.62	7.45	1	0.74
4	6.23	7.27	-1	0.74
5	5.65	6.65	0	0.73

Correlation with known galaxy clusters/groups

Correlation with known quasars

Distribution of QSOs in the region of supercluster

QSOs Distribution: Blue $(0.25 \le Z \le 0.42)$ and Magenta (Z>0.42)

- **1.** A giant galaxy supercluster on a very large scale is found from SDSS-III deep spectroscopic sample (largest spanning size ~ 600 700 Mpc)
- **2.** Highly filamentary morphology surrounded by numerous voids and filaments
- **3.** Strong correlation with known clusters/groups and quasars listed in SDSS
- How such a very massive galactic structure originated ?
- How many more may exist in the local/distant Universe?
- Do we find such objects in the big numerical simulations?
- Our discovery provides a direction for many future Observational and Theoretical studies.

PAN-STARRS